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[1] Drylands are an important ecosystem, as they cover over 40% of the Earth’s land
surface and are believed to be sensitive to climate change. Where dryland vegetation
supports pastoralist livestock production, catastrophic ecological shifts present a grave
concern because of the direct coupling between the quality of available forage and human
livelihoods. In this research we investigate the organization of vegetation on hillslopes by
developing a relatively simple spatially explicit daily stochastic ecohydrological model.
Using a 2 year observational study in central Kenya, we present an empirical patch water
balance of three representative patch types, bare soil, grass, and tree. Given the recent
expansion of bare areas, the system is dominated by Hortonian runoff and overland flow. By
incorporating concepts of simple local interactions from complex systems we are able to
simulate a range of surface flowpath convergence states across the hillslope during a rain
event. The model also allows the root to canopy radius of the tree patches to vary affecting
the length scale of water competition. By changing the length scales of facilitation and
competition, the model demonstrates a range of most efficient hillslope water-use patterns
from random to highly organized static vegetation patterns. The findings of this work
support the mechanism of symmetry-breaking instabilities for pattern formation in drylands.
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1. Introduction
[2] The health of arid and semiarid lands is a critical

challenge, as these ecosystems cover �41% of the Earth’s
land surface and contain 38% of the human population
[Reynolds et al., 2007]. The majority of traditional pastoral-
ist societies exist in these ecosystems [Sankaran et al.,
2005]. The sustainability of these societies is particularly
vulnerable to catastrophic shifts in vegetation structure
because of the direct coupling of vegetation condition and
basic human sustenance [Fratkin and Mearns, 2003; Kefi
et al., 2007; Rietkerk et al., 1996]. In addition, global cli-
mate change is anticipated to have significant impacts on
future rainfall patterns in dryland ecosystems, affecting
both the mean and variance [Meehl et al., 2007], further
increasing the potential for catastrophic vegetation shifts.

[3] The threat of catastrophic shifts in these systems and
the diverse pattern development of natural vegetation have
sparked scientific interest into the principles that govern

dryland vegetation patterns [Borgogno et al., 2009;
Rietkerk and Van de Koppel, 2008; Scanlon et al., 2007;
Sole, 2007; Turnbull et al., 2008]. Given the natural control
of water limitation in these ecosystems [Rodr�ıguez-Iturbe
and Porporato, 2004], theories of self-organization are of-
ten invoked to explain the emergent patterns [Caylor et al.,
2009; Eagleson, 1982; Hwang et al., 2009; Kerkhoff et al.,
2004; Schymanski et al., 2008]. In addition, development
of mathematical models that incorporate the physical mech-
anism of symmetry-breaking instabilities [Borgogno et al.,
2009] can recreate the diverse set of spatial patterns that
may emerge. The resulting periodic and scale-free distribu-
tion patterns that emerge [Manor and Shnerb, 2008; von
Hardenberg et al., 2010] have been hypothesized to indi-
cate signatures of imminent desertification in drylands
[Barbier et al., 2006; Kefi et al., 2007; Scanlon et al.,
2007; Sole, 2007]. While the mathematical models are able
to recreate the emergent patterns, experimental measure-
ments in natural ecosystems justifying the use of symme-
try-breaking instabilities are often lacking [Barbier et al.,
2008; Borgogno et al., 2009].

[4] Of particular importance to dryland ecosystems is the
coupling of surface and subsurface flow processes [Istanbul-
luoglu and Bras, 2005, 2006]. Depending on the spatial and
temporal scale of interest, physical models may require
a nontrivial amount of computer resources [Ivanov et al.,
2008], and datasets for model parameterization and valida-
tion are often not possible to obtain [Vereecken et al.,
2008]. While a full coupling of the physical processes is
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possible [Furman, 2008], the stochastic nature of rainfall
forcing in drylands [Katul et al., 2007] often makes solu-
tions intractable at larger spatial and longer temporal scales.
In order to address this issue, parsimonious models captur-
ing the general behavior of the system have been proposed
that yield analytical solutions [D’Odorico et al., 2006;
Isham et al., 2005; Laio et al., 2001]. However, the limits
of analytical models often do not extend beyond idealized
conditions that are not always representative of processes
that govern natural systems.

[5] The purpose of the current work is to investigate the
processes that affect the organization of vegetation at the
spatial scale of hillslopes. Using observations from a dry-
land ecosystem in central Kenya, we construct a parsimoni-
ous spatially explicit daily ecohydrological model that is
able to demonstrate a range vegetation patterns observed
across this ecosystem. Of particular importance in this
ecosystem and many dryland ecosystems [Newman et al.,
2006], is the effect of redistribution of surface waters to
downslope vegetation patches as a result of Hortonian run-
off and overland flow. The influence of runoff-runon dy-
namics has been exacerbated in recent years in this
ecosystem by the expansion of bare soils due to overgraz-
ing, with the changes leading to the proliferation of an
undesirable succulent plant that threatens the sustainability
of this pastoralist ecosystem [King et al., 2012].

[6] Due to the nature of overland flow and ubiquity of
surface flow paths on hillslopes [Dingman, 2002]; explicit
treatment of individual flow paths is impractical at larger
spatial scales. While previous studies have coupled runoff-
runon dynamics with sediment transport processes [Saco
et al., 2007], idealized geometry [Thompson et al., 2010],
and probabilistic modeling [Manfreda et al., 2009], we use
a rule-based method based on a complex adaptive systems
approach [Harte, 2002; Levin, 1998] to generate the basic
patterns. In order to compare different possible static spatial
vegetation patterns that exist, we constrain the hillslope
model to the growing season water balance. Using the dry-
land resource trade-off hypothesis proposed by [Caylor
et al., 2009], we are able to compare the different static pat-
terns according to their hillslope water use efficiency. Start-
ing with the same initial conditions and simulating a series
of growing season daily precipitation events, we evaluate
the changes in the growing season water balance between
different static spatial patterns of vegetation with the same
fractional cover. In addition, we vary the strength of the
local facilitation and long-range competition effects by
varying the model parameters that control the effectiveness
of surface flowpath convergence and root to canopy ratios,
respectively. By changing these two parameters we are able
to demonstrate a range of most efficient static spatial pat-
terns from highly organized to random, which maximizes
hillslope water use efficiency. We compare the most effi-
cient modeled spatial patterns and different fractional cov-
ers with high-resolution satellite imagery of the study site.

[7] The remainder of the paper is organized as follows.
In section 2 we describe the study site in central Kenya, our
observational study, hillslope water balance, and estimation
of hillslope water use efficiency. Section 3 presents the
observational study results, model validation and sensitiv-
ity analysis, and observed and modeled patterns of hillslope
vegetation spatial clustering. In Section 4 we describe the

hillslope spatial clustering comparison and the role of facil-
itation and competition in creating emergent vegetation
patterns in this dryland ecosystem. The remainder of the
paper is devoted to identifying limitations of the current
study that should be addressed with future work.

2. Methodology
2.1. Observational Study

[8] Our observational study site (0�3102200N, 36�5503600E)
is located in the Upper Ewaso Ng’iro River basin on the
central Kenya highlands (Figure 1a). Details about the
basin’s general climate, soils, and vegetation are provided
elsewhere [Franz et al., 2010], with parameters at the obser-
vational study site summarized in Tables 1 and 2. The study
site is located in Koija Group Ranch, which is communally
owned by resident Laikipia Maasai people. The study site
has well-defined basins between 1 and 15 km2, where indi-
vidual basins have typical slopes between 3 and 7� with
maximum hillslope lengths ranging between 0.5 and 2 km
(Figure 1b). Fractional cover of vegetation was determined
using a 4.8 km � 14.7 km Quickbird image (Digitalglobe,
Inc. Longmont, CO, resolution 0.77 m � 0.77 m) of the
study area, taken on 23 May 2007, at the end of the primary
growing season. The image was divided into 400 � 400 m
sections, and each pixel underwent unsupervised classifica-
tion as bare, grass, or tree (K. Guan et al., Multi-sensor syn-
thesis of vegetation pattern over a large climatic gradient
transect in Africa, manuscript in preparation, 2012) (Figure
1c). Mean bare soil fractional cover in 400 m � 400 m areas
was 53.2% (standard deviation ¼ 16.8%), grass 19.7%
(7.07%), and tree 26.9% (14.1%). In addition to the remote
sensing image, individual trees were mapped and character-
ized (including species, height, and canopy dimensions), in
twenty-seven 1-ha plots around the study area (Table 3) (A.
Lester, unpublished data, 2008). Table 3 illustrates that Aca-
cia etbaica, A. mellifera, and A. tortilis are the three domi-
nant species in the study area and locally dominant within
individual plots. The three species had similar height (1 to 3
m) and canopy crown sizes (2 to 16 m2) among the plots
surveyed. A Poisson analysis of individual tree clustering
(Lester, unpublished data), indicated that trees tended to be
more aggregated in 14 of the 21 plots analyzed and the tend-
ency to cluster was not explained by variations in mean
slope, elevation, species abundance, or tree density.

[9] Beginning in February 2007 and ending in December
2008, a series of data logging sensors were used to deter-
mine rainfall, soil moisture, and surface runoff for three
different representative patch types; bare soil, grass, and
tree (A. tortilis) with grass. We selected one patch of each
type occurring in a 30 m radius area, located at the mid-
slope in an arbitrarily selected basin with a mean slope of
5�. We installed a tipping bucket rain gauge (TE525,
Campbell Scientific Inc., Logan, UT), and in each patch in-
stalled time domain reflectometry (TDR) soil moisture sen-
sors at 5, 10, 20, 30, and 70 cm depth, oriented horizontally
(CS616, Campbell Scientific Inc., Logan, UT); data were
collected every 10 min. We present the data as aggregated
daily values and average the soil moisture measurements
for a value representative of the top 40 cm. We calibrated
each CS616 probe with volumetric soil moisture samples
collected at 15 and 30 cm in July 2007 and April 2008
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following [Kelleners et al., 2005]. We quantified surface
runoff in each of the three patch types with a constructed
4 m � 4 m gutter and rail system. The rail was buried 10
cm in the ground and extended 10 cm above the surface on
three sides. The gutter was placed perpendicular to the
downslope direction and buried 5 cm in the ground to cap-
ture surface runoff inside the plot. A wire mesh was used to
prevent debris flow into the gutter and was periodically
cleaned during the experiment. The captured runoff water
was collected in 1000 L tanks where the height of the water
was recorded with a pressure transducer (CS408, Campbell
Scientific Inc., Logan, UT), at 10 min intervals. The water
level data was aggregated to daily values. We analyzed all
storm event data at the daily timescale and patch water-use
data at the interstorm timescale between rain events.

2.2. Hillslope Water Balance

[10] A fully coupled dynamic vegetation, energy, and
water balance model is not a trivial problem to solve for
the spatial and temporal scales of seasonal vegetation
response on hillslopes. Depending on system physics,

fluxes may be connected both locally and across the entire
domain, adding to the complexity of the problem solution.
Because we are primarily motivated by differences in sea-
sonal landscape water use, we constructed a relatively sim-
ple spatially explicit modeling framework at the daily
timescale. The model is a two-dimensional, vertically aver-
aged model with the primary state variable being the daily
volumetric water content � (m3 m�3) averaged over the top
400 mm of the soil column Zr (mm). The individual
patches, x, represent 4 m � 4 m areas identified from the
observational study. The basic water balance within each
patch, x, at time t is determined according to the daily
changes in patch soil moisture, � (x, t), according to

��ðx; tÞ
�t

Zr ¼ Iðx; tÞ � Lðx; tÞ � ETðx; tÞ; (1)

where I (mm d�1) is the daily infiltration rate, L (mm d�1) is
the daily vertical leakage rate, and ET (mm d�1) is the daily
evapotranspiration rate (Table 2). Volumetric water content
and relative saturation, s (%), are used interchangeably

Figure 1. (a) Location map of study area in central Kenya illustrating political boundaries, watershed
boundary, Quickbird imagery boundary, and distribution of three most abundant Acacia tree species
[Franz et al., 2010], (b) digital elevation map (90 m resolution) of study area, and (c) distribution of
bare, grass, and trees from reclassification of satellite imagery (Guan et al., 2012, in preparation).
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where they are related by s ¼ �
n, where n (m3 m�3) is the soil

porosity.
[11] The effective rainfall rate onto each patch x at time

t, Pe(x, t), is determined by considering both the direct pre-
cipitation onto patch x at time t, P(x, t) (mm d�1), and the
upslope runoff into patch x, Ru(x, t) (mm d�1), so that

Peðx; tÞ ¼ Pðx; tÞ þ Ruðx; tÞ: (2)

Daily rainfall, P(x, t), is characterized as a marked Poisson
process with an interstorm arrival rate (d�1) of � and a
storm depth (mm) of �. The rainfall process is further char-

acterized by a daily rainfall intensity, i (mm h�1), which is
assumed to be independent of storm depth. The underlying
probability distributions of interstorm arrival rate, rainfall
depth, and rainfall intensity are all taken to be exponential,
with mean values of each distribution derived from observa-
tions of the rainfall process within the study basin (Table 1).

[12] The daily patch water balance was separated into
three regimes based on the effective precipitation and patch
water balance characteristics. No subsurface lateral redis-
tribution of water was considered in this model but its role
in this ecosystem is discussed elsewhere [Franz et al.,
2011]. The first regime is the interstorm period, when evap-
otranspiration (ET) is occurring. Here the soil moisture so-
lution follows an exponential decay asymptotically
approaching the soil hygroscopic point, sh, where the decay
constants k (m3 m�3 d�1) are defined from the observed
soil moisture traces for each patch type which are assumed

Table 2. Summary of Soil and Vegetation Parameters for Each Patch Typea

Bare Grass Tree

Soil depth, Zr (mm)b 400 400 400
Maximum canopy interception, Imax (mm)b 0 1 2
Maximum evapotranspiration, Emax (mm d�1)c 7 4 6
Vertical saturated hydraulic conductivity, Ksv (mm h�1)d 6.6 (0.779) 16.7 (1.53) 14.5 (2.31)
Incipient Hortonian runoff generation, R�d (mm)e 6 6 6
Porosity, n (m3 m�3)f 0.45 0.45 0.45
Air Entry Pressure,  ae (mm)f 218 218 218
Pore size index, b (�)f 4.9 4.9 4.9
Soil water retention curve,  avg (MPa)g �0.0007 �0.0007 �0.0007
Hygroscopic saturation, sh (%, where  ¼ �10 MPa)g 0.1419 0.1419 0.1419
Field capacity saturation, sfc (%, where  ¼ �0.033 MPa)g 0.4555 0.4555 0.4555
Wilting point saturation, sw (%, where  ¼ �3 MPa)h – 0.1815 0.1815
Incipient stomatal closure point saturation, s� (%, where  ¼ �0.045 MPa)h – 0.4276 0.4276
Water stress exponent, qg – 2 2
Evapotranspiration exponential decay constant k, (m3 m�3 d�1)i 0.0621 (0.0041) 0.0305 (0.0038) 0.0565j (0.0056)
Mean daily patch water use at well watered conditions ¼ nZrksfc (mm d�1) 5.09 2.50 4.63

aValue reported in parenthesis is SE.
bAssumed value.
cApproximated by Penman-Monteith, Penman-Combination equation, using growing season climate parameters (Table 1) and vegetation characteristics [Franz

et al., 2010].
dEstimated from 12 samples in each patch type collected with minidisc infiltrometer in July 2007.
eEstimated from 21 storm events for 4x4 m runoff plots during 2 year experiment.
fEstimated from sandy loam [Clapp and Hornberger, 1978; Dingman, 2002].
gAdopted from [Rodr�ıguez-Iturbe and Porporato, 2004].
hEstimated from A. tortilis [Otieno et al., 2005].
iEstimated from 15 inter-storm periods during 2 year experiment.
jValue is for combined grass and tree patch. Subtract grass decay constant from this value to obtain tree only decay constant for roots that extend

beyond canopy crown.

Table 1. Summary of Growing Season Climate Parameters for Ex-
perimental Study Site in Central Kenya at 0�3102200N, 36�5503600Ea

Growing Season Climate Parameters for Kenya Value

Length of growing season (day)b 90
Number of growing seasons per yearb 2
Total rainfall (mm)c 178.2
Coefficient of variationc 0.318
Percent of annual rainfall per growing seasonc 35
Mean daily storm depth, �(mm)c 9
Mean storm arrival rate, �(d�1)c 0.22
Average rainfall rate, i (mm h�1)d 6.5 (4.24)
Mean daily relative humidity (%)e 65 (5)
Mean daily pan evaporation (mm d�1)e 6 (2)
Mean daily incoming shortwave radiation (W m�2 daylight�1)e 325 (90)
Mean sunshine hours (h d�1)e 6.5 (2.5)
Mean daily temperature (�C)e 20 (1.5)
Mean daily wind speed (m s�1)e 1.9 (0.5)

aPlease note that the values reported in parentheses is SD.
bPrimary growing seasons are March to May and October to December.
cEstimated from 50 years of daily (CETRAD/NRM3 of Nanyuki, Kenya).
dEstimated from 21 storm events over 2 year experiment measured with

tipping bucket rain gauge (10 min intervals).
eEstimated from 15 years of daily data (CETRAD/NRM3 of Nanyuki,

Kenya).

Table 3. Summary of Individual Tree Species in Plots Surveyed
Inside the Satellite Imagery Study Area

Stem Densitya Average (%) SD (%)

A. drepanolobium 0.08 0.41
A. etbaica 13.27 14.95
A. mellifera 32.50 31.21
A. nilautica 8.61 9.65
A. reficien 0.91 1.10
A. seyal 3.16 13.38
A. tortilis 39.29 27.75
Non-Acacia 2.18 3.23

Percent Canopy Cover
All plots 19.90 10.47

aSampled 27 plots around study area, where 21 were 100 m � 100 m, 6
were 50 m � 100 m, and 4802 individual trees were categorized (Lester,
unpublished data).
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identical across the domain (Table 2). While the roots in
the grass patches do not extend beyond their surface can-
opy, we allow the tree roots to extend beyond their above-
ground canopies defined by the parameter RCR, which is
the root to canopy radius (again assumed identical over the
domain for each simulation). Each patch is assigned an
effective k value, which is the sum of fraction of roots mul-
tiplied by the patch type decay constant for the contributing
neighbors. For the model simulations, we assume the tree
roots occupy 50% of its four primary neighbors and 25% of
its four diagonal neighbors for an RCR equal to 2, and tree
roots occupy 100% of its four primary neighbors and 50%
of its four diagonal neighbors for an RCR equal to 3. The
total evapotranspiration of an individual tree patch is the
sum of its own cell’s water use and water use from neigh-
boring cells. In addition to evapotranspiration, vertical leak-
age out of the soil column (L) may take place if the daily
starting soil moisture values are above field capacity, sfc.
Partitioning of leakage and evapotranspiration is defined by
capping the maximum daily evapotranspiration rate of each
patch type (Table 2), where the remaining water loss from
the soil moisture exponential decay is attributed to leakage.

[13] On rainy days, evapotranspiration from vegetated
patches is set to zero for the entire day, based on the
assumption that the high relative humidity results in small
vapor pressure deficits. Observations from the patch runoff
plots indicate a threshold effective precipitation value, R�d
(mm), before Hortonian surface runoff is generated (Tables
2 and 4). In addition, we set a maximum canopy intercep-
tion value, Imax (mm), where the sum of Imax and R�d must
be exceeded in order for vegetated patches to generate sur-
face Hortonian runoff to downslope patches, Rd (mm). We
define this as the second regime, where effective precipita-
tion is converted only into interception, Int (mm), and bare
soil evaporation, E (mm), which we sum together as event
losses, EL (mm). We note that maximum values are near
daily average maximum evapotranspiration rates for the
study site (Table 2). Again, vertical leakage (L) may take
place if daily starting saturations are above field capacity.
The third regime is when effective precipitation is higher
than the sum of incipient runoff generation and maximum
canopy interception. Here surface downslope runoff (Rd)
occurs and significant infiltration (I) may occur resulting in
higher soil moisture values. Vertical leakage occurs when
the depth of the infiltration front exceeds the soil rooting
depth. We use a closed form solution of the Green and

Ampt equation [Dingman, 2002; Green and Ampt, 1911] to
estimate the infiltration depth allowing us to partition infil-
tration (I) and leakage (L) (Table 2).

[14] The upslope runoff onto each patch x is dependent
on the contribution of three upslope patches according to

Ruðx; tÞ ¼
X3

j¼1

�
Rdð j; tÞ � fdð jÞ

�
; (3)

where Rd ( j, t) (mm d�1) is the downslope runoff from one
of three upslope patches j at time t, and fd ( j) is the portion
of runoff from patch j that enters the downslope patch x.
Given the relatively steep slopes (>3�), we only considered
lateral redistribution of surface runoff to the three down-
slope neighbors.

[15] The values of fd ( j) are taken to be constant during
the model simulations and are determined by the configura-
tion of three downslope patches scaled by the relative con-
tour lengths between adjacent grids in a flat square lattice.
Because we were primarily motivated by exploring a range
of general convergence and divergence patterns, this simple
flat plane assumption was sufficient for our modeling
framework. A more rigorous set of flowpath equations can
be found in the work of Quinn et al. [1991] that includes
both the influence of contour lengths and change in slope
on surface convergence patterns. Generally in this ecosys-
tem, the greatest fraction of runoff goes directly down-
slope, but the downslope patch type also impacts these
patterns such that greater fractions of runoff enter down-
slope bare patches, and the smaller fractions enter down-
slope vegetation patches. This redistribution of surface
water is the result of sediment transport processes (accumu-
lation of material on vegetation and scouring of bare
patches), which is not explicitly considered in this work but
is clearly visible from observations of flowpaths at the
study site. Here we use vegetation type as a proxy for local
topography and subsequent surface convergence patterns.
The parameter fr, controls the fraction of runoff that enters
downslope vegetation patches. Physically, this parameter
controls the level of convergence of surface flow paths,
with values near 0 resulting in highly convergent flow into
connected bare soil patches and values near 0.4 result in
neutral flow into all downslope patches. A sensitivity anal-
ysis of this parameter will be presented in section 3.3. The
full suite of fd coefficients for the five possible configura-
tions of three downslope bare (b) and vegetated (v) patches
within the model is

b; b; b ¼ v; v; v

b; v; b

v; b; v

b; v; v

b; b; v

¼

1

2ð
ffiffiffi
2
p
þ 1Þ

; 1� 1

ð
ffiffiffi
2
p
þ 1Þ

;
1

2ð
ffiffiffi
2
p
þ 1Þ

1

2
� fr

2
; fr;

1

2
� fr

2

frffiffiffi
2
p ; 1� 2frffiffiffi

2
p ;

frffiffiffi
2
p

1� fr 1þ 1ffiffiffi
2
p

� �
; fr;

frffiffiffi
2
p

�ð4
ffiffiffi
2
p
þ 7Þðfr �

ffiffiffi
2
p
Þ

8
ffiffiffi
2
p
ð
ffiffiffi
2
p
þ 1Þ2

; �ðfr �
ffiffiffi
2
p
Þð17þ 12

ffiffiffi
2
p
Þ

8
ffiffiffi
2
p
ð
ffiffiffi
2
p
þ 1Þ2

;
frffiffiffi

2
p

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(4)
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For a flat square lattice the relative contour lengths between
the four primary faces and diagonal faces are 1 :

ffiffiffi
2
p

.
We define ac! to be the primary downslope face contour

length and ab
!

and ad
!

to be the left and right diagonal
contour lengths. The relative flux partitioning (RF)
of the primary and diagonal faces are defined as:

RFac! ¼
ab
!

ac!þab
! ¼

ffiffiffi
2
p

1þ
ffiffiffi
2
p ¼ 1� 1ffiffiffi

2
p
þ 1

and RF a!b ¼

RF a!d ¼
1

2

ac!

ac!þab
!

 !
¼ 1

2

1

1þ
ffiffiffi
2
p

� �
¼ 1

2ð
ffiffiffi
2
p
þ 1Þ

; as

given by the fd coefficients in line 1 (b,b,b ¼ v,v,v) of equa-
tion (4). Assuming a value of fr and that it accounts for the
local contour and slope effects between bare and vegetated
patches, we then equally partition the remaining flux to
each diagonal face in line 2 (b,v,b). Again scaling by the
relative contour lengths, we define the diagonal face coeffi-
cients in line 3 (v,b,v) as frffiffi

2
p , with the middle coefficient set

as the remainder. From our previous definitions the middle
and right diagonal coefficients are defined in line 4 (b,v,v),
with the left diagonal coefficient equaling the remainder.
The right diagonal coefficient in line 5 (b,b,v) is previously
defined, and we partition the remaining flux to the other
two coefficients by scaling their relative contour lengths
and including one higher order term, where the primary
face coefficient is:

RF a!c ¼ 1� frffiffiffi
2
p

� � ffiffiffi
2
p

ð
ffiffiffi
2
p
þ 1Þ

 !
þ 1� frffiffiffi

2
p

� �
1

2ð
ffiffiffi
2
p
þ 1Þ

 !

�
ffiffiffi
2
p

ð
ffiffiffi
2
p
þ 1Þ

 !
þ 1

4ð
ffiffiffi
2
p
þ 1Þ

 ! !

¼ �ðfr �
ffiffiffi
2
p
Þð17þ 12

ffiffiffi
2
p
Þ

8
ffiffiffi
2
p
ð
ffiffiffi
2
p
þ 1Þ2

and the left diagonal face coefficient is

RF a!b ¼ 1� frffiffiffi
2
p

� �
1

2ð
ffiffiffi
2
p
þ 1Þ

 !
þ 1� frffiffiffi

2
p

� �
1

2ð
ffiffiffi
2
p
þ 1Þ

 !

� 1

2ð
ffiffiffi
2
p
þ 1Þ

 !
þ 1

4ð
ffiffiffi
2
p
þ 1Þ

 ! !

¼ �ð4
ffiffiffi
2
p
þ 7Þðfr �

ffiffiffi
2
p
Þ

8
ffiffiffi
2
p
ð
ffiffiffi
2
p
þ 1Þ2

[16] In each patch, the downslope runoff (Rd) generated
is characterized using an empirical model derived from two
years of rainfall and runoff observations (21 total rainfall
events) collected at the study site (Table 4). The resulting
relationship takes the form of a general exponential model

RdðPe; iÞ ¼
�

CR
0 þ CR

1 ln ðPeÞ þ CR
2 ln ðiÞ

þ CR
3

��
ln ðPeÞ � 2:4449

�

�
�

ln ðiÞ � 1:6661
��#2

;

(5)

where CR
0 -CR

3 are coefficients determined from least-squares
regression of the field data for each patch type (either bare
or vegetated), effective rainfall is determined in each patch
x at time t (Pe(x, t)), and daily rainfall intensity is constant
across all patches (i(t)) determined only by the stochastic
rainfall process (Table 5). We note that travel time, flow ve-
locity, and residence time are not explicitly modeled across
the individual patches and refer to other models for explicit
treatment of these processes [Furman, 2008]. Multivariate
linear regression indicated minimal dependency of anteced-
ent moisture conditions on runoff production.

[17] The daily water stress, �(t), of each vegetation patch
is [Rodr�ıguez-Iturbe and Porporato, 2004]

�ðtÞ ¼

0 sðtÞ > s�

s� � sðtÞ
s� � sw

� �q

sw � sðtÞ � s�;

1 sðtÞ < sw

8>>><
>>>:

(6)

Table 4. Summary of Total Rainfall, Rainfall Intensity, and Total
Plot Runoff of 4 m � 4 m, From 25 Storm Events over 2 Year
Experiment Period for Each Patch Type

Daily
Rainfall (mm)

Average Rain
Rate (mm h�1)

Total Runoff
(mm), Bare Soil

Total Runoff
(mm), Grass

Total Runoff
(mm), Tree

6.6 5.7 4.3 1.3 0.7
7.8 –a 0.8 0.1 0.2
6.2 –a 2.1 0.9 0.3
65.0 –a 42.5 37.2 27.0
32.9 8.0 25.2 19.1 20.6
1.5 3.0 0.1 0.0 0.2
1.8 3.6 0.0 0.0 0.1
26.4 6.1 8.6 3.8 3.8
24.4 7.0 15.1 8.7 11.6
15.7 7.1 6.9 3.6 3.0
2.0 2.0 0.1 0.0 0.2
19.9 4.7 10.0 4.4 8.6
44.2 4.5 18.8 10.8 8.7
18.5 14.4 12.2 11.0 11.2
28.6 9.6 12.8 9.0 8.0
12.5 7.5 7.8 4.8 4.5
4.4 2.7 0.4 0.2 0.7
24.2 7.3 12.0 9.8 8.7
35.0 20.2 –b 13.4 18.3
7.9 5.2 0.3 0.3 0.5
12.6 10.1 5.6 4.7 4.6
15.4 4.8 5.6 2.7 8.6
4.0 2.1 0.3 0.0 0.5
80.0 7.9 43.9 44.0 34.7
5.5 2.9 0.4 0.1 0.6

aTipping bucket rain gauge malfunctioned, total estimated from wedge
gauge.

bPressure transducer in tank malfunctioned.

Table 5. Summary of Multivariate Linear Regression Runoff
Model Coefficients for Each Patch Type Estimated From Storm
Events in Table 4 Using Stepwise Multivariate Linear Regression

Coeff. Bare Grass Tree

C0
R �2.3241 �3.3893 �2.6296

C1
R 1.5187 1.4483 1.4333

C2
R 0.4975 0.7687 0.3621

C3
R 1.2500 1.4007 1.2813

R2
adj 0.92 0.90 0.88

p value <0.05 <0.05 <0.05
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where s(t) is the daily average saturation, sw is the wilting
point saturation, s� is the saturation at incipient stomatal
closure, and q is the exponent of the saturation stress equa-
tion, which is assumed equal to two [Rodr�ıguez-Iturbe and
Porporato, 2004] (Table 2).

[18] Model initial conditions were set to the incipient
stomata closure saturation (Table 2), which is the point at
which stress begins and we assumed the start of significant
response in the vegetation to additional rainfall. We note
that changing the initial condition did not significantly alter
the relative order of growing season hillslope water-use
efficiencies for the different vegetation-clustering strat-
egies. The top boundary condition of the domain is a no-
flow boundary and represents the top of the hillslope. The
two sides of the domain are joined periodically forming a
wrapped cylindrical domain. The lower boundary repre-
sents the stream channel where surface flow can exit freely
out of the domain and is considered lost to the system. The
system of surface and subsurface flow equations were
solved separately. The system of surface flow equations
was solved sequentially starting with the top of the hill-
slope and moving to the bottom in order to estimate the
effective rainfall and coefficients for each downslope cell.
We note that this ordered solve of the system variables is
equivalent to a direct solution of the implicit (backward
Euler) time discretization for the surface runoff. As such
the method is stable even though the surface flows are
faster than the Courant-Friedrichs-Lewy condition for the
spatial-temporal grid [LeVeque, 1992]. Following the solu-
tion of the surface flow equations, the system of subsurface
flow equations was solved with a forward Euler solution,
which satisfies the Courant-Friedrichs-Lewy condition for
the spatial-temporal grid given the low vertical hydraulic
conductivity of the soil (Table 2).

2.3. Estimation of Hillslope Water Use Efficiency

[19] Using the water balance model described in section
2.2, we investigate the hillslope water use efficiency of dif-
ferent static spatial configurations of baregrass and baretree
mosaics on a hillslope. Due to the stochastic nature of rain-
fall, we use Monte Carlo simulations of growing season
precipitation (daily rainfall depth and rate) and average
over the ensemble of growing seasons to estimate the sea-
sonal water balance. We found that averaging twenty grow-
ing seasons and three spatial patterns was sufficient for
obtaining stable means of each seasonal water balance
component and seasonal water stress. The sensitivity analy-
sis of spatial patterns and growing season realizations is
presented in section 3.3.

[20] In order to more effectively search the nearly infi-
nite parameter space of possible spatial patterns, we
selected four different vegetation-clustering strategies rang-
ing from highly organized to random given by: many
aggregated clumps, many dispersed clumps, few aggre-
gated clumps, and few dispersed clumps (Figure 2). The
different spatial patterns were simulated in the following
manner, which closely resembles a Neyman-Scott process.
First, we selected a number of parent clustering sites, Np,
where each site is randomly located in the 120 � 120 cell
domain. Next, a new vegetation patch was placed from a
randomly selected parent site, at a random orientation and a
radial distance generated from an exponential distribution

controlled by the mean distance between parent and child
sites, �pc (m). The process was repeated until the desired
fractional cover of the domain was reached.

[21] Comparisons between each spatial pattern were
evaluated with the average stress-weighted plant water use
metric proposed by [Caylor et al., 2009]

TS ¼ T

R
ð1� �Þ

� 	
; (7)

where TS, is the stress-weighted plant water use metric
which varies between 0 and 1, T

R is the fraction of available
rain water used for transpiration (assumed to be evapotrans-
piration from vegetated pixels) over the growing season, R
is the total seasonal rainfall ¼ ��Tseas, Tseas is the length of
the growing season (day), and � is the average daily plant
water stress over the growing season. The bracket h i, repre-
sents the spatial averaging operator of all vegetation loca-
tions in the domain, and the over bar represents the time
averaging operator over the ensemble of growing seasons.

3. Results
3.1. Observational Study and Empirical Patch
Water Balance

[22] The time series of daily soil moisture averaged over
the top 40 cm and daily rainfall totals during the nearly 2
year observational study are presented in Figure 3. While
the observational study did not explicitly consider subsur-
face throughflow, of the 25 rainstorms, 22 did not impact
the CS616 probes at 70 cm, which indicates the majority of
the soil moisture dynamics are restricted to the top 40–50 cm
of the soil column. The rainstorms that did impact the deepest
probes showed delayed time-to-peak soil moisture of 10–15

Figure 2. Examples of four different modeled vegeta-
tion-clustering patterns for 15% fractional cover for, (a)
many aggregated clumps (Np ¼ 169, �pc 4 m), (b) many
dispersed clumps (Np ¼ 169, �pc 40 m), (c) few aggregated
clumps (Np ¼ 16, �pc 4 m), and (d) few dispersed clumps
(Np ¼ 16, �pc 40 m).

W01515 FRANZ ET AL.: A DRYLAND ECOHYDROLOGICAL HILLSLOPE MODEL W01515

7 of 18



days compared to 1–3 days for the shallower probes. In
addition, the deepest probes showed interstorm decays
shaped like inverted parabolas as opposed to exponential
decays at the shallower probes. The delayed time-to-peak
and inverted parabolic interstorm decay shapes indicate
additional sources of water other than strictly vertical infil-
tration from storm event water. Details on the nature of
subsurface water redistribution in this area are extensively
discussed in the work of Franz et al. [2011], but we note
the influence is fairly localized around patch margins (1–10
m), and most prevalent in densely vegetated patches like
Sansevieria volkensii where long-term vegetation dynamics
are believed to be impacted by the local redistribution of
subsurface water [King et al., 2012].

[23] We found that the shallower probes interstorm soil
moisture traces followed an exponential decay with R2 val-
ues over 0.9 for the 15 periods analyzed. Statistical analysis
comparing the mean patch k values using Tukey’s HSD test
found statistically significant differences in the means at
the 0.05 confidence level (Table 2) [Walpole et al., 2002].
By comparing the relative k values we found that the high-
est rate of water use occurred in bare soil, followed by tree
with grass, and grass. The mean daily patch water use com-
pares well with the maximum estimated evapotranspiration
for each patch (Table 2). In addition, we found that the indi-
vidual k values were independent (linear correlations less
than 0.05) of rain depth, rain rate, and antecedent soil mois-
ture. We note that additional CS616 probes around the study
area in A. mellifera and A. etbaica patches illustrate similar
interstorm decay rates as the A. tortilis patch used in this
study. We selected A. tortilis as the representative tree spe-
cies for this modeling study because of the existing litera-
ture on the species and the coupled CS616 and runoff data.

[24] In contrast, we found that surface runoff was highly
correlated to average daily rain rate and total rainfall, with
R2 values near 0.9 for the generalized linear models sum-
marized in equation (5) and Tables 4 and 5. By represent-
ing the surface runoff generation with an empirical
relationship, we were able to construct a simplistic repre-
sentation of the patch storm event water balance (Figure 4).
The storm event patch water balance presented in Figure 4
illustrates the various water balance components, runoff,
infiltration, leakage, and event losses, for different total
rainfall, three rain rates (low, average, high), and two ante-
cedent soil moisture conditions (dry and wet). For all cases,
we found that bare soil had the greatest amount of runoff
generation and the lowest vertical leakage. Runoff values
for all patches increased with higher rain rates. Leakage
values also greatly increased with higher antecedent soil
moisture conditions. Overall, the simplistic patch water
balance follows expected behavior of the represented proc-
esses and allows us to more easily construct complex spa-
tial interactions, which are believed to drive vegetation
structure in this system.

3.2. Model Validation

[25] As is the case with most drylands [Wilcox and New-
man, 2005], the annual runoff ratio of the Upper Ewaso
Ng’iro River Basin is less than 5%, where rainfall and gla-
cial melt on Mount Kenya feed water to the rest of the ba-
sin [Franz, 2007]. Using 25 years of precipitation data and
streamflow data upstream and downstream of the study
area, the average annual runoff ratio is �1% [Franz, 2007].
Given the low runoff values, classic model validation with
streamflow data is not totally satisfactory as 99% of the an-
nual water balance is evapotranspiration. Currently in the

Figure 3. Summary of (a) CS 616 soil moisture traces averaged over the top 40 cm for bare, grass, and
tree (Acacia tortilis) patches, and (b) daily rainfall during the observational study in central Kenya
(0�3102200N, 36�5503600E).
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study area, a 25 m tall eddy covariance tower and isotope
techniques are being used to partition evaporation and tran-
spiration over a wide range of temporal scales at the land-
scape level (K. K. Caylor, unpublished data, 2011). In
addition, flumes are being installed in smaller ephemeral
basins to obtain more resolved runoff data. As these data-
sets become available more finely resolved model calibra-
tion and validation tests would be possible.

[26] In terms on the annual water balance, the model
performance is consistent with the observations. At tree
densities of 20%, the annual runoff is 1%–2% with a maxi-
mum value of 5% for all simulations performed. We note
that the modeled runoff is consistent at the plot scale (Table
4) where local runoff is often greater than 50% of incoming
precipitation (Figure 4) and at the integrated landscape scale
where streamflow data is available. In addition, the individ-
ual time series of soil moisture for each patch are recovered
from the observed rainfall. The remaining annual water bal-
ance terms for the 20% tree density simulations indicate
interception <0.1%, leakage �1%, evapotranspiration from
vegetated patches at 10%–25%, and bare soil evaporation at
50%–80% for all simulations performed.

3.3. Model Sensitivity

[27] A full sensitivity analysis of parameters for the non-
spatial form of this model is performed elsewhere [Franz
et al., 2010]. Here we focus on the new spatial components
of the model, which include the redistribution of surface
water and the ability of vegetation to use water from its
neighbors. In addition, we perform a sensitivity test on the
most efficient vegetation patterns where we vary the mean
values of the random variables controlling the stochastic
rainfall process with the results presented in section 3.5.

[28] An emergent property of this dryland ecosystem and
many drylands is the redistribution of surface water from
Hortonian generated runoff. Instead of trying to model the
physical processes explicitly, we took a complex adaptive
systems approach [Harte, 2002; Levin, 1998] to generate
the general behavior observed in these systems. In our sim-
ple water balance model the level of local surface flowpath
convergence is controlled by the parameter, fr, which is
the fraction of runoff to a downslope vegetation patch
(equation (4)). Based on a few simple rules of the local
neighborhood, we were able to generate a wide range of
system flow convergence behavior by varying fr. An exam-
ple of the different behavior is presented in Figure 5, where
we simulated a large intense rain event on an initially satu-
rated hillslope. By averaging over all the bare soil and tree
patches we were able to describe the mean and variance
of the hillslope surface flow convergence by the ratio of
effective precipitation to direct precipitation, Pe

P . As fr
approaches 0, the largest patch differences and highest vari-
ation in Pe

P is observed, with mean values nearly double
between bare and tree patches. At fr values near 0.2, the
mean and variance of Pe

P is about one third larger in bare
patches compared to tree patches. As fr approaches 0.4, the
difference in the mean and variance of Pe

P between the
patches goes to 0, resulting in a neutral redistribution of
surface water. At fr values greater than 0.4, tree patches
begin to receive higher Pe

P compared to bare patches. The
parameter becomes unbounded for values greater than
�0.58.

[29] In order to evaluate the efficiency of different hill-
slope vegetation patterns, we compared the average grow-
ing season plant water use and plant water stress (equation
(7)). Given the random fluctuations in the rainfall proper-
ties, we stochastically simulated different realizations of
the growing season daily precipitation from the mean val-
ues of the random variables estimated from gauge data
(Table 1). As a way of approximating a stable mean of the
TS metric, we performed a sensitivity analysis of TS by sep-
arately varying the number of realizations of spatial pat-
terns (holding Np, �pc, and total fractional cover constant)
and the number of growing seasons (holding �, �, and
i constant). The mean and standard error values of the TS
metric are presented in Figure 6 for the four different vege-
tation-clustering patterns. The results indicate that the vari-
ation in TS is more sensitive (greater than 1 order of
magnitude) to stochastic variation in growing season rain-
fall patterns compared to variation in generated spatial
patterns. In order to reduce computational costs, we assume
that averaging twenty growing seasons for three realiza-
tions of each vegetation-clustering pattern provides a stable
mean of the TS metric, as further increases in the number

Figure 4. Summary of empirically derived event water
balance for representative bare, grass, and tree patches. Pan-
els summarize the event water balance components of run-
off, infiltration, losses, and vertical leakage for three
different rain rates (low, top panels; average, middle pan-
els; high, bottom panels) and two different antecedent soil
moisture conditions (dry, left panels; and wet, right panels).
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of growing season sample sizes only moderately reduced
the standard error.

3.4. Spatial Clustering of Vegetation Patterns

[30] Using the high-resolution imagery available for the
study site, we identified the natural organization of vegeta-
tion patterns by analyzing the vegetation contiguous cluster
size distribution following [Scanlon et al., 2007]. After
classification of the image into bare, grass, and tree pixels
(Guan et al., 2012, in preparation) (Figure 1c), we defined
contiguous clusters as vegetation pixels that were con-
nected through any shared edge (four immediate neighbors,
von Neumann neighborhood, no diagonals) in a 400 m �
400 m area. We further partitioned the 400 m � 400 m
areas by different total fractional vegetation cover and by
areas dominated by grass or tree pixels. The cumulative
distribution functions (cdf) of grass and tree cluster sizes
for 10%, 20%, 30%, and 40% fractional covers are pre-
sented in Figures 7a–7d. The empirical cdf’s and 95%

confidence intervals were created from eight to twelve
400 m � 400 m images in each of the different classes. All
cdf’s more closely fit an exponential model compared to a
power law distribution with R2 values in excess of 0.99.
With increasing fractional cover, the median cluster size
increased from �300 m2 at 10% to �500 m2 at 40%. In
addition, the upper tail of the distribution shifted by over
an order of magnitude for increasing fractional cover.
Figure 7a indicates that the grass and tree cdf’s were nearly
identical at 10% fractional cover. Figures 7b and 7c illus-
trates that at 20% and 30% fractional cover the tree cdf
shifted to relatively larger median cluster sizes compared to
the grass cdf. As shown in Figure 7d, at 40% fractional
cover, the grass and tree cdf’s appear to be converging to a
similar distribution.

[31] In order to help interpret the observed vegetation
patterns we computed the patch size cdf’s of one realization
of the different modeled vegetation-clustering strategies at
each fractional cover (Figures 7e–7h). The range of the

Figure 5. Example of (a) baretree model domain and (b) sensitivity of surface flow convergence pa-
rameter, fr, to the mean and variability of the ratio of effective rainfall to local precipitation averaged
over all bare and tree patches in the domain.

Figure 6. Sensitivity of TS metric to (a) the number of pattern realizations averaged and (b) the number
of growing season realizations averaged, for four different patterns of vegetation. Note: error bars in fig-
ure denote 61 standard error.
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four different modeled vegetation-clustering strategies pro-
vided reasonable comparisons with the observed patterns.
As with the observed patterns, the median cluster size
increased with increasing fractional cover. Also with
increasing fractional cover, the strategy of many aggre-
gated clumps produced larger cluster sizes compared to the
other three strategies. The largest discrepancy between the
empirical and modeled cdf’s is that the modeled patterns
are not able to fully capture the upper tail behavior at frac-

tional covers of 30% and 40%. The reason for this discrep-
ancy is that 5%–10% residual grass or tree cover existed in
the observational data for the tree or grass dominated areas
(Figure 1c), which may skew the observed cluster size dis-
tribution. Most importantly, the cdf’s (Figures 7e–7h) and
example clustering strategies (Figure 2) illustrate that the
four different modeled vegetation-clustering strategies pro-
vide a pragmatic approach to exploring the nearly infinite
parameter space of possible spatial patterns.

Figure 7. Cumulative distributions and 95% confidence intervals of observed vegetation cluster sizes
for different fractional covers, (a) 10%, (b) 20%, (c) 30%, and (d) 40%, of grass and tree dominated
areas. Between 8 and 12, 400 m � 400 m sample areas from the satellite imagery were used to estimate
the different cumulative distributions and confidence intervals. Cumulative distributions of vegetation
cluster sizes for different fractional covers, (e) 10%, (f) 20%, (g) 30%, and (h) 40%, for one realization
of four different modeled vegetation-clustering patterns.
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3.5. Modeled Organization of Hillslope Vegetation
Patterns

[32] Using the TS metric as a way to select the most effi-
cient hillslope vegetation spatial pattern, we present the
most efficient patterns at 20% fractional cover for increas-
ing fr values and two different RCR parameter values (Fig-
ure 8). By breaking down the TS metric (Figures 8a and
8b), we can evaluate the relative changes in seasonal plant
water use hTRi and water stress avoidance hð1� �Þi individ-
ually. Figures 8a and 8b illustrates how each component of
the TS metric changed for each vegetation-clustering strat-
egy as a function of fr and RCR. At an RCR ¼ 1, we found
that hTRi increased with increasing fr values with the maxi-
mum curvature at high fr values. The different vegetation-
clustering strategies increased at different rates, leading to
crossover of the strategy with the largest relative magnitude
of hTRi. At an RCR ¼ 3, again we found that hTRi increased
with increasing fr, but the relative magnitude of hTRi shifted
upward compared to an RCR ¼ 1 and the slope became
comparatively more nonlinear. The magnitude of the shift
in hTRi was not equal between the four strategies, leading to
the many dispersed clumps strategy having the largest hTRi
for all fr values. In comparison, we found that the different

vegetation-clustering strategies followed the same general
trend in hð1� �Þi for increasing fr and RCR ¼ 1 and RCR
¼ 3. At low fr values the strategy of a few aggregated
clumps had the highest hð1� �Þi value and at around fr ¼
0.25–0.30 the strategy with the highest hð1� �Þi value
switched to many dispersed clumps. The consequences to
the TS metric are presented in Figure 8c, where we see the
switch in the optimal strategy from a few aggregated
clumps to many dispersed clumps with increasing fr. At fr
¼ 0.15–0.25, we see the four strategies converging to the
same mean TS metric value. Depending on the realization
of the spatial pattern and climatic inputs, any of the four
strategies may result in the highest mean TS metric value.

[33] In addition to varying the local surface convergence
and root to canopy ratios, we performed simulations that
varied the mean values of the random variables that control
the stochastic rainfall process (Figure 9 and Table 6). By
varying mean storm depth (�) and storm arrival rate (�) we
are able to change the mean growing season precipitation
(� ¼ ��Tseas) while holding the variance of growing sea-
son precipitation constant (�2 ¼ 2�2�Tseas) and vice versa.
The results in Figure 9 illustrate that changes in the total
rainfall, rainfall variability, and storm intensity do not

Figure 8. Summary of (a) average growing season plant water use hTRi (b) average growing season
stress avoidance hð1� �Þi, and (c) TS hillslope efficiency metric for different surface flow convergence
parameter values fr, and two different root to canopy radius parameter values RCR. Note error bars are
61 standard deviation of each pattern realization, fractional cover was held constant at 20%, and the
change in scale for they axis in Figures 8a and 8b for each RCR value.
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affect the relative order of most efficient spatial patterns for
a given fr and RCR value. Interestingly, it is only changes
in the surface flow convergence parameter fr, that result in
changes in the most efficient vegetation-clustering strategy
indicating that the localized model parameter controls the
order of the most efficient vegetation pattern as opposed to
the global rainfall parameters.

4. Discussion
4.1. Comparison of Observed and Modeled
Vegetation Patterns

[34] The timescale for trees to reach maturity makes
experimental studies impractical, leaving only a single
realization of the natural process to observe and interpret.
An alternative strategy is to recreate the evolution of
the vegetation patterns [Jeltsch et al., 1996; van Wijk
and Rodriguez-Iturbe, 2002]. Depending on the strength
of the nonlinearities, chaotic behavior may arise requiring
a complete time history to reconstruct system dynamics
[Boyce and DiPrima, 2001]. Adding to the complexity,

the random fluctuations of rainfall in dryland ecosystems
require a stochastic treatment of the process [Katul et al.,
2007].

[35] As a first step toward understanding the full dynami-
cal system of vegetation patterns on hillslopes, we investi-
gated the most efficient steady state patterns derived from a
simple water balance model and compared them with a
snapshot of the ecosystem from high-resolution imagery.
Analysis of the observed cluster size distribution indicated
all distributions more closely fit an exponential compared
to a power law distribution. The high-resolution imagery
revealed that at fractional covers of 10% and 40%, trees
and grasses have a similar observed cluster size distribu-
tion. At low fractional cover and given the likelihood of
longer connected bare soil flowpaths, the model results sug-
gest that the driving mechanism controlling the vegetation
pattern is the strategy that most effectively conserves
system water loss. As the fractional cover approaches the
percolation threshold near 0.59 for a von Neumann neigh-
borhood [Stauffer and Aharony, 1985], the importance of
connected pathways diminishes. Here, the influence of

Figure 9. Summary of TS hillslope efficiency metric for three different surface flow convergence pa-
rameter values, fr ¼ 0.05, 0.20, 0.35, and root to canopy radius, RCR ¼ 1, (a–c) by varying total growing
season precipitation, �, while holding the standard deviation of growing season precipitation, �, and
mean rainfall intensity, i, constant, (d–f) varying � while holding � and i constant, and (g–i) varying i
while holding � and � constant. Note error bars are 61 standard deviation of each pattern realization
and fractional cover was held constant at 20% and specific scenarios can be found in Table 6.
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plant-plant competition seems to drive system behavior,
which is manifested in the plant water stress component.
With increasing fractional cover, vegetation is more likely
to be located next to one another, where the distance of
overlapping roots influences the spread of vegetation.
Observations at fractional covers of 20% and 30% revealed
that trees and grasses have different cluster size distribu-
tions where tree clusters tend to form larger clusters at the
same probability level. It is at these intermediate fractional
covers where the spatial patterns are most sensitive to miti-
gating resource use and scarcity.

[36] We present model efficiency analyses at the inter-
mediate fractional cover of 0.2 in Figures 8 and 9, which
illustrates the most efficient clumping strategy by varying
the surface flow convergence parameter, fr, and the root to
canopy ratio parameter, RCR. Our model results show a
switch in the most efficient strategy, where at high fr values
(neutral redistribution of surface flow to bare and vegetated
patches) the strategies of dispersed clusters have the two
highest TS metric values. In contrast, at low fr values (con-
vergent flow in connected bare soil patches) we find that
the strategy of aggregated clumps have the two highest TS
metric values. The effects of an increasing RCR value
result in higher relative plant water use (Figure 8a) and
lower stress avoidance values (Figure 8b). Overall, the
combined effects of increased resource use and decreased
stress avoidance does not greatly alter the relative order of ef-
ficiency of clumping strategies (Figure 8c), but it does slightly
shift the location of the crossover point from fr ¼ 0.25 at an
RCR ¼ 1 to an fr ¼ 0.15 at an RCR ¼ 3, indicating the
effects of different rooting strategies in comparing various
static spatial patterns.

4.2. Observed Changes in Facilitation and
Competition in Dryland Ecosystems

[37] Using a simplistic water balance model representa-
tive of bare soil, grass, and tree patches of a central Kenya
dryland, we are able to demonstrate various most efficient
static spatial patterns which are consistent with high-resolu-
tion satellite imagery of the study area. The model is able
to demonstrate a range of most efficient static vegetation
patterns from highly organized to random by varying the fr
and RCR parameters. Depending on the value of these pa-
rameters, the length scales of competition and facilitation
change to form different patterns [Barbier et al., 2008;
Borgogno et al., 2009; Manor and Shnerb, 2008]. Observa-
tions from satellite imagery of this dryland ecosystem indi-
cate vegetation-clustering patterns that follow exponential
distributions instead of power laws. Given the recent his-
tory (4–5 decades) of intense grazing in this ecosystem
[King et al., 2012], our observations are consistent with
recent predictions of exponential distributions prevalent in
degraded landscapes [Kefi et al., 2007; Scanlon et al.,
2007]. However, given the time lag for trees to reach matu-
rity it is unclear whether the distribution of clusters has
been affected by grazing or whether the patterns have ever
followed power law distributions. Without an extensive
historical record (many decades), it is not possible to recon-
struct the observed changes in woody canopy cluster
distributions.

[38] As an alternative, we believe our modeling results
support a framework to understand signs of degradation in
this ecosystem. The current situation of intense grazing
practices in central Kenya has led to the recent transition

Table 6. Summary of Input Parameters for Rainfall Sensitivity Analysis, see Figure 9 for Results

Scenario
Mean Daily

Storm Depth, � (mm)
Mean Storm

Arrival Rate, � (day�1)
Average Rainfall Rate,

i (mm h�1)
Total Rainfall per

Growing Season, � (mm)
SD of Rainfall per

Growing Season, � (mm)

vary � 7.00 0.364 6.5 229.1 56.6
vary � 7.50 0.317 6.5 213.8 56.6
vary � 8.00 0.278 6.5 200.5 56.6
vary � 8.50 0.247 6.5 188.7 56.6
vary � 9.00 0.220 6.5 178.2 56.6
vary � 9.50 0.198 6.5 168.8 56.6
vary � 10.00 0.178 6.5 160.4 56.6
vary � 10.50 0.162 6.5 152.7 56.6
vary � 11.00 0.147 6.5 145.8 56.6
vary � 14.14 0.140 6.5 178.2 71.0
vary � 12.38 0.160 6.5 178.2 66.4
vary � 11.00 0.180 6.5 178.2 62.6
vary � 9.90 0.200 6.5 178.2 59.4
vary � 9.00 0.220 6.5 178.2 56.6
vary � 8.25 0.240 6.5 178.2 54.2
vary � 7.62 0.260 6.5 178.2 52.1
vary � 7.07 0.280 6.5 178.2 50.2
vary � 6.60 0.300 6.5 178.2 48.5
vary i 9.00 0.220 2.5 178.2 56.6
vary i 9.00 0.220 3.5 178.2 56.6
vary i 9.00 0.220 4.5 178.2 56.6
vary i 9.00 0.220 5.5 178.2 56.6
vary i 9.00 0.220 6.5 178.2 56.6
vary i 9.00 0.220 7.5 178.2 56.6
vary i 9.00 0.220 8.5 178.2 56.6
vary i 9.00 0.220 9.5 178.2 56.6
vary i 9.00 0.220 10.5 178.2 56.6
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from a tree-grass savanna to a baretree matrix. The expan-
sion of bare soil areas has led to an increase in Hortonian
runoff and subsequent development of rills and gullies
affecting the convergence of surface flow paths. The model
results presented in Figure 8 indicate the transition to a few
aggregated cluster strategy as most efficient as fr values
approach zero. Future studies in these types of systems, in
particular the recent expansion of Sansevieria volkensii in
central Kenya [King et al., 2012], may be able to use this
modeling framework as a tool to test hypotheses of new
pattern formation. The observations and modeling frame-
work provide support that symmetry-breaking instabilities
[Borgogno et al., 2009] drive vegetation patterning in dry-
land ecosystems.

4.3. Comparison of Hillslope Efficiency Metrics

[39] While support exists for using the resource trade-off
hypothesis in dryland ecosystems [Caylor et al., 2009], we
further test this hypothesis by comparing the most efficient
vegetation-clustering patterns with two other possible hill-
slope efficiency metrics.

[40] The first alternative candidate we investigated is
given by minimizing the sum of hillslope water losses HL,

HL ¼ 1� Lþ Q

R

� �
; (8)

where L is the sum of leakage out of the rooting zone for
all patches over the growing season, Q is the sum of runoff

out of the domain over the growing season, R is the total
seasonal rainfall ¼ ��Tseas, Tseas is the length of the grow-
ing season, and the over bar represents the time averaging
operator over the ensemble of growing seasons. The second
alternative metric we investigated is the directional leaki-
ness index, DLI, which was developed to assess potential
soil loss on hillslopes (minimization of the distribution of
flowpath lengths) [Ludwig et al., 2002]. The advantage of
DLI is its estimation of landscape leakiness with readily
available remotely sensed data products.

[41] The comparisons of the different metrics are pre-
sented in Figure 10 for a range of fr values. We find that
the HL and 1-DLI metrics are consistent with the rankings
of different vegetation clustering strategies. For all values
of fr, HL and 1-DLI (metric not a function of fr) predict the
many dispersed clumps strategy to be the most efficient and
the few aggregated clumps strategy to be the least efficient.
Comparison of all three metrics agree when fr > 0.25,
when the redistribution of surface water is neutral between
bare and vegetated patches. However, at fr < 0.25 the met-
rics give opposite predictions in the most efficient cluster-
ing strategy. Neglecting the differences in the 1-DLI metric
because it is independent of fr, Figures 8 and 10 illustrate
that with smaller hillslope losses, the few aggregated clump
strategy is able to capture more water than the other strat-
egies at low fr values, which leads it to have higher water
use and lower stress.

[42] Because the model only looks at the three down-
slope neighbors, vegetation patches with three or more

Figure 10. Summary of (a) TS, (b) HL, and (c) 1-DLI hillslope efficiency metrics for different surface
flow convergence parameter values fr and an RCR ¼ 1. Note error bars are 61 standard deviation of the
different baretree pattern realizations.
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pixels will be able to effectively access the water in an
upslope flowpath. This is similar to the mechanism respon-
sible for cellular automata models that predict the migrat-
ing tigerbush bands at low slopes [Dunkerley, 1997;
Lefever and Lejeune, 1997]. Because the slopes at this site
are more severe, we assumed the redistribution of surface
water is limited to just the three downslope neighbors. Pre-
liminary dynamic vegetation results with the proposed eco-
hydrological modeling framework suggest migrating
vertically oriented ellipses to be one possible nontrivial sta-
ble solution.

[43] Given the availability of remote sensing products,
simple metrics like DLI [Ludwig et al., 2002, 2006, 2007],
seem to provide a reasonable assessment of relative hill-
slope water losses for different vegetation spatial patterns.
However, the differences in the HL and 1-DLI metrics with
the TS metric at low fr values, indicates that maximization
of only the limiting resource is not enough to accurately
predict system behavior [Kerkhoff et al., 2004]. The moder-
ating effects of plant water stress play a vital role in this
dryland ecosystem.

4.4. Limitations of This Study

[44] While the simple water balance model was able to
demonstrate the efficiency of a range of static distribution
patterns on hillslopes, the model is still a preliminary step
in understanding the principles that govern dryland vegeta-
tion patterns. The main limitation of the current work is the
static treatment of vegetation. The justification is that an
important first step in studying coupled nonlinear equations
is to establish the character of the critical points in the sys-
tem. The current work identifies two stable critical points
that are represented by the many dispersed clumps vegeta-
tion-clustering strategy at high fr values and the few aggre-
gated clumps strategy at low fr values. The model results
suggest a switch in these two strategies at fr values near
0.2, where all four strategies collapse to the same TS value.
Despite the limitations of treating vegetation statically,
identification of these two stable strategies and transition
point will greatly facilitate in understanding dynamic vege-
tation patterns.

[45] Another limitation is that the empirical water bal-
ance was developed from a single set of experiments.
While the simple water balance follows the expected
behavior of the modeled processes, the role of changes in
slope on runoff generation should be included [Quinn
et al., 1991]. In addition, the functional dependence of the
fr parameter with slope, rain depth, rain intensity, vegeta-
tion type and sediment transport will likely be important.
For computational efficiency, the RCR metric was limited
to a maximum value of three, however the extent of the
roots may extend well beyond the canopy with values
approaching ten in other drylands [Lejeune et al., 2004]. In
addition, RCR is likely a function of hillslope position, as
studies have shown transpiration rates to be a function of
hillslope position [Tromp-van Meerveld and McDonnell,
2006]. An interesting next step of this modeling framework
would be to allow RCR to vary as a function of position
and assess the impacts to the annual water balance and
derived optimal static patterns through the TS metric.
Finally, we found that �90% of the rainfall dynamics were
limited to the top 40 cm of the soil column. However,

widespread bioturbation [Darlington, 1997] and increases
in densely populated species in this ecosystem cause pref-
erential vertical infiltration points [Franz et al., 2011], lead-
ing to redistribution of subsurface water on the timescales
of many days to weeks. While the subsurface redistribution
is fairly localized [Franz et al., 2011], the impacts on the
surrounding vegetation communities in this ecosystem
have been profound, as subsurface redistribution is the
likely mechanism responsible for the rapid proliferation of
an undesirable native succulent [King et al., 2012]. In addi-
tion, studies from other drylands have found hydraulic lift
and the vertical redistribution of water via root systems to
be a critical source of water and buffer against plant stress
in times of extended drought [Otieno et al., 2005; Scott
et al., 2008; Williams and Albertson, 2004]. We note that
our analysis did not include water use from sources deeper
than 40 cm and this may be a source of bias in the results.
The full influence of subsurface flow processes and the role
of deeper sources of water on the organization of dryland
vegetation remains an open and challenging research topic.

5. Conclusions
[46] Given the direct coupling of pastoralist societies and

the structure of dryland vegetation, understanding the proc-
esses that govern the distribution of vegetation is of critical
importance. In this work we develop a spatially explicit
daily ecohydrologic model that investigates the spatial
structure of vegetation on hillslopes. Combining the simple
water balance model with the resource trade-off hypothesis
governing dryland vegetation patterns, we are able to dem-
onstrate a range of most efficient static vegetation cluster-
ing distribution patterns by varying the length scales of the
parameters that control facilitation and competition. The
work provides an example from the drylands of central
Kenya where symmetry-breaking instabilities govern the
observed vegetation patterns. In addition, the model pro-
vides a framework to study the recent proliferation of the
undesirable succulent S. volkensii, which may have devas-
tating consequences on the communal grazing lands of cen-
tral Kenya. With the continued development of such tools,
quantitative and predictive information can be given to
land managers to help reverse the cycle of degradation and
restore the system back to its historic productive tree-grass
state.
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