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Abstract. Tropical forests provide important ecosystem services in maintaining biodiversity, sequester-
ing carbon and regulating climate regionally and globally. Climate triggers the seasonal transitions of
vegetation structure and function in tropical forests. In turn, the seasonal cycles of structure and function in
tropical forests feed back to the climate system through the control of land-atmosphere exchange of carbon,
water and energy fluxes. Large uncertainties exist in the carbon and water budgets of tropical forests, and
environmental controls on phenology are among the least understood factors. Although field studies have
identified patterns in the environmental controls on local-scale species-level phenology in the tropics, there
is little consensus on large-scale top-down environmental controls on whole-ecosystem seasonality. In this
paper, we use both optical and microwave remote sensing to investigate the seasonality of vegetation
canopy structure and function in three distinct tropical African forest types, and identify environmental
triggers or controls of their variability. For most tropical forests that have a closed canopy and high leaf
biomass, optical remote sensing (e.g., vegetation indices) captures canopy photosynthetic capacity (i.e.,
canopy function), while small-wavelength microwave remote sensing characterizes the leaf biomass and
leaf water content of the upper canopy (i.e., canopy structure). Our results reveal a strong coupling of
canopy structure with canopy function in the tropical deciduous forests and woody savannas, and their
seasonalities are both controlled by precipitation rather than solar radiation. By contrast, tropical evergreen
forests in Africa exhibit a decoupling of canopy structure from canopy function revealed by different
sensors: canopy photosynthetic capacity shown by the optical remote sensing is linked to the seasonal
variation of precipitation, while microwave remote sensing captures semi-annual leaf-flushing that is
synchronous with peak insolation intensity at the top of the atmosphere, which is bimodal. The differential
coupling of canopy structure and function in tropical forests observed from remote sensing highlights
differences inherent in distinct vegetation types within the tropics that may originate in the different life
histories of their respective floras. This satellite-based finding encourages more field-based studies to
clarify the interpretation of these large scale patterns.
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INTRODUCTION

Tropical forests have the highest terrestrial
biodiversity on the Earth (Dirzo and Raven 2003),
contain around 25% of the carbon in the
terrestrial biosphere (Bonan 2008), and intact
tropical forests collectively possess the largest
annual rate of carbon sequestration among all
terrestrial ecosystems (Pan et al. 2011). Tropical
forests are also strongly coupled to the climate
system, both responding to climate variability
(Nemani et al. 2003) and regulating the climate
system through physical, chemical, and biologi-
cal processes that affect planetary boundary layer
dynamics, the hydrologic cycle, and atmospheric
composition (Bonan 2008, Richardson et al.
2013). Nevertheless, many aspects of tropical
forest dynamics remain poorly understood. The
estimated size of the tropical forest carbon sink
since 1990 is more uncertain than for any other
forest biome (Pan et al. 2011), and models give a
wide range of projections for the tropical forest
response to climate change (Sitch et al. 2008). A
particular gap in our understanding pertains to
the seasonality, or phenology, of tropical forests
(Saleska et al. 2009, van Schaik et al. 1993), which
is exemplified by the lack of ground observation
(Wright and van Schaik 1994) as well as the
struggle to accurately simulate the seasonality of
tropical forests by dynamic vegetation models
(Kim et al. 2012). These uncertainties are likewise
evident in the weak process level understanding
of the seasonal variation in land-atmosphere
exchange (Fisher et al. 2009).

The phenological development of tree species
is characterized by distinct seasonal phases of
bud burst, leaf flushing, flowering, senescence
and dormancy (Calle et al. 2010). The timing of
these events fulfills multiple objectives in a
plant’s life cycle, including matching resource
demand with availability and sychronizing with
pollinators (Yeang 2007a, Wright and van Schaik
1994), while working within the constraints
imposed by environmental extremes (e.g., cold
temperatures, water deficit, light limitation).
Phenological changes in vegetation are also
associated with seasonal variation in land-atmo-
sphere gas exchange, including photosynthesis
and transpiration, due to the dependence of these
fluxes on leaf area and its physiology. For tropical
species that occupy a weakly seasonal environ-

ment, the physical changes in canopy structure
and physiological changes in canopy function are
not necessarily synchronized in time and may
have different top-down controls (Doughty and
Goulden 2008, Huete et al. 2008). While there is a
long history of studying rhythmic growth in
individual tropical species (Hallé et al. 1978,
Reich 1995), there remains a gap in the under-
standing of how leaf display is related seasonally
to leaf photosynthesis, and what the large-scale
controls of this synchrony are across a range of
climates and vegetation types in the tropics.
Hereafter, we refer to the canopy leaf biomass as
‘‘vegetation canopy structure’’, and the canopy
photosynthetic activities as ‘‘vegetation canopy
function’’.

It is widely thought that environmental cues
trigger changes in leaf biomass (Hallé et al. 1978),
though internal regulation of plants may play a
role in highly aseasonal tree species (Reich 1995,
Williams et al. 1997). In the tropics, the two most
important environmental cues relate to radiation
and water (van Schaik et al. 1993). In brief, where
rainfall seasonality is pronounced, dry-season
drought primarily constrains phenology (Reich
and Borchert 1984); where water resources are
ample, sunlight plays a more important role in
triggering transitions in phenological phases
(Wright and van Schaik 1994). However, the
details of how these environmental constraints
ultimately impact phenology are still controver-
sial in tropical forests (van Schaik et al. 1993), and
highly species-dependent (Williams et al. 1997).

For example, the impact of radiation has been
hypothesized to be mediated either through
daylength (Rivera and Borchert 2001, Rivera et
al. 2002, Elliott et al. 2006, Williams et al. 2008),
timing of sunrise or sunset (Borchert et al. 2005),
or insolation thresholds (van Schaik et al. 1993,
Wright and van Schaik 1994, Yeang 2007a, 2007b,
Calle et al. 2009, 2010). The insolation threshold
pertains to solar radiation intensity at the top of
the atmosphere (i.e., shortwave downward radi-
ation at the top of atmosphere, ‘‘SWTOA’’
hereafter). SWTOA has two peaks over the
tropical equator on the equinoxes, and these
two peaks in SWTOA coincide with semi-annual
tropical forest flowering and leaf flushing found
from field observations (Yeang 2007a, Wright and
van Schaik 1994, Calle et al. 2009, 2010). Because
SWTOA is related to the direct sunlight in the
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clear sky at midday, which can be perceived by
plants, it is proposed that SWTOA is a strong
tropical phenology trigger. Mechanistic evidence
for this hypothesis is provided by the finding
that strong insolation plays a direct role in the
transcription of genes that influence floral/leaf
development (Jackson 2009). However, maxi-
mum SWTOA control on tropical leaf phenology
has not been verified at large scales, mostly
because no suitable measurements have been
available. It is worth noting that SWTOA is
different from shortwave radiation at the top of
canopy (SWCNP), which is diminished from
SWTOA by clouds and aerosols in the atmo-
sphere.

Other radiation-related hypotheses have been
proposed and tested in the past. The daylength
hypothesis fails to explain the seasonality of
evergreen forests in the tropical equator since
there is little variation in day-length at equator
regions (Renner 2007). The hypothesis of timing
of sunrise or sunset proposes that the seasonal
shifts in these events as a result of the Earth’s
axial tilt and its elliptic orbit trigger the synchro-
nous flowering/leaf-flushing at the equator
(Borchert et al. 2005). The relevance for this
hypothesis in the tropics has been questioned,
because it would require plants to sense subtle
cyclical shifts (30 minutes over the course of a
year) that arise between solar time and an
external reference chronometer time (Renner
2007, Yeang 2007a, 2007b).

The water-related hypotheses are also contro-
versial because phenological patterns vary wide-
ly within the same species or among different
species in tropical forests (Williams et al. 1997).
Many tropical forests have well-established
drought-adaptive mechanisms linking the sea-
sonality of growth with the seasonality of water
availability. These strategies include deploying
deep roots to access soil water reserves, which
potentially allows them to grow in the dry season
(Nepstad et al. 1994, Dawson 1996, Borchert
1998, Meir et al. 2009, Markewitz et al. 2010), or
by timing leaf flushing to precede the onset of the
rainy season (Williams et al. 2008).

Remote sensing has provided unique oppor-
tunities to monitor large-scale temporally-contin-
uous vegetation dynamics (Chambers et al.
2007). Vegetation Indices (VI) from optical
remote sensing have been widely used in

vegetation monitoring (Tucker et al. 2008),
typically using some variation of a ratio or
difference between reflectance in the red (R)
and near-infrared (NIR), such as the Normalized
Difference Vegetation Index: NDVI ¼ (NIR " R)/
(NIRþR). In this study we used a related VI, the
Enhanced Vegetation Index (EVI), which is in
many ways similar to NDVI but includes a term
that alleviates atmospheric effects of aerosols
released in biomass burning (Huete et al. 2002).
The difference in reflectance in R and NIR
differentiates green vegetation from soil and
non-photosynthetic vegetation. At the canopy
level, EVI is linear to the fraction of absorbed
photosynthetically active radiation (fAPAR),
which is directly related to canopy photosyn-
thetic capacity, but is not a reliable predictor of
leaf area index or biomass, especially for vegeta-
tion with thick and closed canopy (Sellers 1985,
1987, 1992). This relationship can also be con-
founded by soil reflectivity in sparse canopies
(Sellers 1987). At landscape scales, EVI is a
composite variable influenced by leaf biochemi-
cal properties, canopy structure and vegetation
fractions (Glenn et al. 2008, Guan et al. 2012). For
closed, dense canopies with little soil contribu-
tion to reflectance, such as those in tropical
forests, EVI has limited sensitivity to extremely
high leaf biomass (esp. those in the tropical
evergreen forests) (Doughty and Goulden 2008),
and its variation can be attributed to changes in
canopy photosynthetic capacity for these forests
(Huete et al. 2008).

Microwave remote sensing (both passive radi-
ometry and active radar) has gradually gained
attention for vegetation monitoring during the
past two decades (Waring et al. 1995, Hardin and
Jackson 2003, Frolking et al. 2005, 2006, 2012).
Microwave instruments are generally much less
sensitive to atmospheric aerosols and moisture
than optical sensors (Ulaby et al. 1982), and
insensitive to seasonal variations in incoming
solar radiation (Frolking et al. 2011). The energy
in microwave backscattering from terrestrial
landscapes is determined by surface dielectric
properties, modulated by microwave frequency
(or wavelength), polarization and viewing angle.
The dielectric property of a landscape is strongly
dependent on its liquid water content (Jensen
2000). Different microwave frequencies have
been used for different purposes. Large micro-
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wave wavelengths, such as P-band and L-band,
have strong penetration capabilities through the
whole crown layer of tropical forests, and the
crown layer (mainly branches) and trunk are the
major contribution of the observed backscatter.
Thus they have been used to estimate total above
ground biomass (Toan et al. 1992, Saatchi et al.
2011). As the frequency decreases, C-band and
Ku-band capture more backscattering from leaf
and twigs (leaf biomass) of the upper canopy of
tropical forests (Toan et al. 1992, Waring et al.
1995). Past research has found that for sparse
vegetation regions, such as grasslands and
savannas, C-band and Ku-band backscattering
observations require careful interpretation be-
cause soil moisture can modulate the signal
(Jarlan et al. 2002). By contrast, in tropical
evergreen forests, with closed canopies, C-band
and Ku-band backscattering are more strongly
related to leaf biomass dynamics, with limited
contribution from soil moisture (Frolking et al.
2011). Another advantage of C-band and Ku-
band is the high revisit frequency (daily or sub-
daily) of the satellite platforms that carry these
sensors. Nevertheless, despite these advantages,
there are still relatively few studies applying
these data for monitoring the dynamics of
tropical forests (Frolking et al. 2011, 2012).

In this paper, we aim to use multiple remote
sensing datasets from both optical and micro-
wave platforms to assess the environmental
controls on the seasonality of vegetation function
and structure in African tropical forests by
testing multiple hypotheses that have been
proposed from field research. Tropical Africa
contains 18% of global tropical forests by area,
but has been understudied compared to the
Neotropical and Asian tropical forest. The
specific science questions we will address in this
paper are: (1) What are the spatial and temporal
patterns of vegetation phenology in African
tropical evergreen forests, tropical deciduous
forests and woody savannas? (2) What are the
environmental controls that best explain the
spatio-temporal patterns of the vegetation phe-
nology in African tropics? We answer these
questions by assessing the correlations between
satellite-measured vegetation indices with pre-
cipitation, SWCNP, SWTOA, day-length and
sunrise (or sunset) time.

MATERIALS AND METHODS

Data
We use two optical remote sensing datasets

and two microwave scatterometer datasets for
vegetation monitoring (Table 1, also see all the
acronyms in Appendix A). Two optical remote
sensing (ORS) datasets are NDVI from GIMMS
(based on AVHRR) and EVI from MODIS
(MOD13C1, Version 5), which have been widely
used for regional and global vegetation applica-
tions (Huete et al. 2002, Tucker et al. 2008). Both
AVHRR and MODIS sensors are polar-orbiting
sun-synchronous satellites. EVI has improved
performance over the traditionally-used NDVI,
by addressing atmospheric effects as well as
improving its sensitivity for high leaf biomass
canopy (Huete et al. 2002). Two microwave
remote sensing (MVRS) datasets are from QuikS-
CAT and ERS-1/-2. QuikSCAT is a Ku-band (13.4
GHz, or 2.1 cm wavelength) active radar with
two rotating pencil beam antennas operating in
H and V polarizations at an incidence angles of
558 and 468. The Ku-band backscatter coefficient
(called ‘‘Ku-dB’’ hereafter) product from QuikS-
CAT that we use combines ascending and
descending overpass together for a daily com-
posite (Long 2001), and since H-band and V-band
have little difference for our analysis, V-band
results are shown in the paper. ERS-1/-2 are C-
band (5.3 GHz, or 5.7 cm wavelength, called ‘‘C-
dB’’ hereafter) active radar instruments, and only
V-band data are available (http://www.scp.byu.
edu/docs/ERS_user_notes.html).

Satellite-gauge-merged precipitation dataset
TRMM 3b42V6 (Huffman et al. 2007) and
geostationary-satellite-based surface shortwave
downward radiation (SWCNP) from NASA
MEaSUREs project are used (Ma and Pinker
2012). Calculation of insolation intensity at the
top of atmosphere (SWTOA) follows the corre-
sponding algorithm in NASA Atmosphere-
Ocean Model GISS (http://aom.giss.nasa.gov/
SOLAR/SRLOCAT.FOR).

Since both ORS and MVRS data contain
random noise from various sources such as
electronic noise and geometric positioning, an
advanced smoothing scheme (Garcia 2010) was
applied to aggregate all good-quality data into
half-monthly level (the data filtering is done
based on the data quality flags). This smoothing
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scheme is fully automated based on a penalized
least squares method (Garcia 2010; see Appendix
B: Fig. B1). We find that different smoothing
approaches do not change the results or conclu-
sions in this work. All the data were aggregated
or interpolated to 0.1 degree (;10 km) and half-
monthly. We only show the result of EVI for ORS,
and Ku-dB for MVRS because EVI and Ku-dB are
representative of ORS and MVRS performances.
Results of other data can be found in the
Appendix B.

Study area
This study focuses on the regions dominated

by tropical evergreen forests (58 N–78 S in
latitude and 108 E–308 E in longitude), tropical
deciduous forests and woody savannas (regions
northern of 58 N and southern of 78 S). We use the
annual LAI mean value of 1.0 (from SEVERI, see
Table 1) as a threshold to delineate the regions of
tropical forests with other ecosystems, which is
generally consistent with land cover classifica-
tions from the GLC2000 Africa product (Mayaux
et al. 2003, also see Fig. 1).

Methods
1. Power spectra and phase analysis.—Fourier

transforms were used to extract the power
spectra at the per-pixel level. Each time series
was normalized by its standard deviation before
the Fourier transform for the purpose of inter-
comparison (Guan et al. 2011). For those regions
with a pronounced single annual cycle (power
spectra of single annual cycle .0.8), a sinusoid
function,

TðtÞ ¼ !T þ Acosð2pt " hÞ ð1Þ

is fitted to the time series T(t) to estimate the

optimal parameters !T, A and h simultaneously
using the trust-region-reflective algorithm (Cole-
man and Li 1994, 1996), where !T refers to the
mean value, A the magnitude of variation, and h
the phase.

2. Correlation analysis.—Spearman correlation
coefficients were calculated between the time
series of vegetation indices in order to investigate
their consistency. Spearman correlations coeffi-
cients were also calculated between the time
series of vegetation indices and environmental
drivers.

3. Hovmöller diagram.—Hovmöller diagrams
(longitudinal averages) are used to characterize
the mean seasonal cycle along a latitude range.
We focus on a typical tropical transect averaged
over 1 degree in longitude (208 E–218 E) and
spanning 30 degrees in latitude (108 N–208 S),
with exclusion of pixels belonging to wetland.
The pattern of Hovmöller diagrams shown here
is only weakly dependent on the longitude
because the Hovmöller diagrams centering on
any of the longitudes from 198 E to 288 E show a
similar seasonality (see Appendix B: Fig. B5). For
better visual illustration, we show the Hovmöller
diagrams of both the percentile value and the
Hovmöller diagrams based on the data raw
values.

RESULTS

Power spectra and phase analysis
From the power spectra and phase analysis,

we find that deciduous forests and woodland in
Africa almost all have pronounced single annual
cycles, shown from both ORS and MVRS data
(only single annual cycle of EVI and Ku-dB are
shown in Fig. 2, power spectra of other datasets

Table 1. Datasets used in this study: variable fields, resolution and source.

Data product Temporal resolution Spatial resolution Coverage Reference!

Optical sensors
GIMMS NDVI half monthly 8 km 07/1981–12/2008 GIMMS1

MODIS EVI/NDVI 16 days 0.058 (;5 km) 02/2000–present MOD13C12

SEVERI LAI daily 3;5 km 01/2007–present SEVERI3

Active scatterometers
QuikSCAT Ku-dB daily 25 km 07/1999–11/2009 QuikSCAT4

ERS-1/2 C-dB every 6 day 25 km 01/1992–01/2001 ERS-1/2 AMI5

TRMM precipitation daily 25 km 1998–present TRMM 3b42V66

Shortwave downward (SWD) radiation daily 0.58 (;50 km) 1984–2007 MEaSUREs7

! References are: 1, Tucker et al. (2003); 2, Solano et al. (2010); 3, Garcı́a-Haro et al. (2008); 4, Long (2001); 5, http://www.scp.
byu.edu/docs/ERS_user_notes.html; 6, Huffman et al. (2007); 7, Ma and Pinker (2012).
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are provided in Appendix B: Fig. B2). The phase
information for the single annual cycle regions
from EVI and Ku-dB are consistent with each
other, with gradients in south-to-north direction
in both northern Africa and southern Africa. This
power spectra/phase pattern of vegetation is
consistent with that of precipitation (Fig. 2),
indicating that water is the dominating control-
ling factor for vegetation seasonality in African
tropical deciduous forests and woodlands. How-
ever, this does not rule out the possibility that
some tropical dry forests may flush their leaves
slightly before the rainy season starts because
remote sensing can only capture the large-scale
pattern rather than taxonomic heterogeneity in
phenology. The spectra and phase pattern of
SWCNP and SWTOA are very different from
those of EVI and Ku-dB in tropical deciduous

forests and woody savanna regions, indicating
that SWCNP and SWTOA have little control on
vegetation seasonality in these regions.

The situation in the tropical evergreen forest
regions (38 N–78 S) is more complex. Both EVI
and Ku-dB have weaker single annual cycles, and
relatively strong double annual cycles in this
region (Fig. 2). EVI and precipitation have more
similar spatial patterns for the power spectra of
double annual cycles, and both are different from
Ku-dB, with the largest differences shown in the
northwestern part of tropical evergreen forests
(i.e., Gabon and Cameroon).

Correlation analysis
Correlation analysis shows that EVI and Ku-

dB are strongly positively correlated in tropical
deciduous forests and woodlands, but they are

Fig. 1. Dominant land cover types from GLC2000 Africa product (1, Closed evergreen lowland forest; 2,
Degraded evergreen lowland forest; 3, Submontane forest; 4, Montane forest; 5, Swamp forest; 6, Mangrove; 7,
Mosaic Forest/Croplands; 8, Mosaic Forest/Savanna; 9, Closed deciduous forest; 10, Deciduous woodland; 11,
Deciduous shrubland with sparse trees; 12, Open deciduous shrubland; 13, Closed grassland; 14, Open grassland
with sparse shrubs; 15, Open grassland; 16, Sparse grassland; 17, Swamp bushland and grassland; 18, Croplands
(.50%); 19, Croplands with open woody vegetation; 20, Irrigated croplands; 21, Tree crops; 22, Sandy desert and
dunes; 23, Stony desert; 24, Bare rock). The black line indicates regions where annual mean LAI large than one.
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Fig. 2. The power spectra of single annual cycle (first column) and double annual cycles (second column) for
the normalized time series of MODIS EVI, Ku-dB, precipitation, SWCNP and SWTOA. For those regions with
pronounced single annual cycle (power spectra of annual cycle .0.8), a sinusoid function T(t)¼ !TþAcos(2pt" h)
is fitted to the time series to estimate the optimal parameters !T, A and h simultaneously. The phase information h
of the corresponding datasets are shown in the third column. The black line indicates regions where mean LAI
large than one.
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uncorrelated or negatively correlated in tropical
evergreen forests (Fig. 3A). Clear boundaries in
Fig. 3A distinguish these two different regimes,
which match well with the land-cover delinea-
tions of tropical evergreen and deciduous forests.
EVI is highly correlated with precipitation almost
over the whole tropical African region (Fig. 3B).

But Ku-dB shows significantly negative correla-
tion with precipitation in evergreen forests (Fig.
3E). The seasonal coupling between EVI and Ku-
dB in deciduous forest and woodland regions has
been further illustrated in Fig. 4, where both EVI
and Ku-dB have a high positive correlation with
precipitation seasonality from latitude north of 58

Fig. 3. Spearman Correlation coefficients of mean annual cycles between: (A) EVI and Ku-dB; (B) EVI and
precipitation; (C) EVI and SWCNP; (D) precipitation and SWCNP; (E) Ku-dB and precipitation; (F)Ku-dB and
SWCNP. Correlation coefficients greater than 0.24 or less than "0.24 satisfy the significance level of P , 0.1,
which has been identified as the black lines in the colorbar.
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N and south of 78 S. This coupling breaks down
for tropical evergreen forest regions (between 58
N and 78 S), where Ku-dB and EVI show almost
reversed correlations with precipitation. We also
find that SWCNP is negatively correlated with
both EVI and Ku-dB in almost all of tropical
Africa, except for parts of the tropical evergreen
forest.

Hovmöller diagram
The Hovmöller diagrams of mean annual cycle

of different datasets are shown in Fig. 5 (two
mean annual cycles are put together for a better
visual illustration). We find that EVI generally
follows the precipitation seasonality for all the
tropical regions ranging from 108 N–208 S (the
same for GIMMS-NDVI in Appendix B: Fig. B3).
Ku-dB, EVI and precipitation are in phase in
tropical deciduous forests and woody savanna
regions (from 108 N–58 N and 108 S–208 S). But
from the latitude of 38 N to 58 S (Fig. 5, second
column for enlarged illustrations), there are
pronounced phase shifts between Ku-dB and
EVI. The regions of 58 N–38 N and 58 S–108 S
exhibit a transitional state from in-phase to out-
of-phase between the two data sets. Two MVRS
datasets (Ku-dB and C-dB) share the similar
spatial pattern in the Hovmöller diagram (Ap-
pendix B: Fig. B3), with C-dB showing less

temporal variability in the tropics due to its
larger wavelength having less sensitivity to leaf
biomass and leaf water content.

For tropical evergreen forest regions (38 N–58
S), SWTOA behaves as a precursor of Ku-dB, i.e.,
the two insolation maximum peaks correspond
to the rising times of Ku-dB from the two
bottoms in its seasonal evolution. The latitudinal
shifts of Ku-dB and insolation are in the same
direction for the two cycles over the course of a
year.

We also find that SWCNP is out of phase with
both EVI and Ku-dB almost across the whole
tropical range 108 N–208 S. Seasonality patterns
of day-length, sunrise, and sunset (Fig. 5) cannot
explain the continuous equatorial transitions in
either EVI or Ku-dB.

DISCUSSION

The results show that the seasonalities of ORS
and MVRS data are strongly coupled in tropical
deciduous forest and woody savannas, which are
mainly controlled by precipitation. Fig. 6A and C
shows two typical examples of this case (i.e., the
time series of interested variables at 10.58 N and
15.58 S, respectively), which clearly demonstrate
the precipitation controls on both EVI and Ku-dB
trajectories.

Fig. 4. Longitudinally-aggregated (208 E–308 E) Spearman Correlation coefficients of mean annual cycle for EVI
and precipitation (blue line) and Ku-dB and precipitation (red line), across the latitude from 108 N to 208 S. The
error bars show the standard deviations of Spearman Correlation within each longitude bin (28).
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Fig. 5. First column: Hovmöller diagrams of mean annual cycle with percentile (or rank) values across the
latitude from 108 S to 208 N for: EVI, Ku-dB, rainfall, SWTOA, SWCNP, day-length and sunrise. All the
Hovmöller diagrams are averaged for the pixels from 208 E to 218 E in longitude. Second column: enlarged
Hovmöller diagrams of mean annual cycle with percentile (or rank) values for the latitude from 38 S to 58 N for
the same set of variables.
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We find that the seasonality of tropical
evergreen forest is weak but exists. ORS and
MVRS data show very different seasonality
patterns, though both of them have double
annual cycles. ORS follows precipitation season-
ality in general. Ku-dB data start to rise from
minimum values synchronous with the maxi-
mum SWTOA (see Fig. 6B), and this correspon-
dent pattern between Ku-dB and SWTOA

persists in the tropical evergreen forest regions
from 38 N to 58 S (Fig. 5).

SWCNP, day-length, sunrise or sunset varia-
tions cannot be attributed as controls on the
seasonal evolution of either EVI or Ku-dB. In the
tropical Amazon, both radiation and cloudiness
have been proposed as candidates of controlling
the vegetation seasonal evolution (Saleska et al.
2003, Myneni et al. 2007, Betts and Dias 2010,

Fig. 6. Mean annual time series of the interested variables for: (A) 108 N; (B) 08; and (C) 158 S. The variables
shown includes: EVI, Ku-dB (unit: dB), precipitation (unit: mm/day), and SWTOA at noon (unit: W/m2). The
mean annual time series are averaged for a square area with latitude width of 18 (centering at 108 N, 08 S, and 158
S, respectively), and with longitude width of 18 (all centering at 20.58 E).
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Bradley et al. 2011), but this is not the case in
tropical Africa. Our recent work has found that
tropical evergreen forests in Africa have much
less wet-season rainfall than their counterparts in
the Amazon and Asian islands. This constrains
the water storage which can be carried over from
wet seasons to dry seasons, and limits the
physiological functioning of African tropical
forests during the dry season. Thus vegetation
functions (e.g., photosynthetic activity or tran-
spiration) follow precipitation rather than other
environmental variables.

The different physical properties captured by
ORS and MVRS data can explain their distinctive
behaviors in tropical evergreen and deciduous
forests. ORS represents landscape-integrated
vegetation photosynthetic capacity depending
on both vegetation fractional cover and leaf
photochemical attributes (e.g., chlorophyll con-
tent), and leaf photochemical attributes is further
determined by both leaf area and leaf-level
photosynthetic capacity. For tropical deciduous
forests and woody savannas, seasonality of leaf
area/biomass and leaf-level photosynthetic activ-
ity usually co-vary, i.e., deciduous trees can only
have photosynthesis and transpiration when
leaves are present. Thus, ORS captures the
multiplicative feature of leaf area and leaf-level
photosynthetic activity (Guan et al. 2012). How-
ever, for tropical evergreen forests characterized
with closed canopy, ORS has little sensitivity to
leaf area due to the very high leaf biomass
throughout the year. The seasonality in ORS is
mostly attributed to variation in canopy-level leaf
biochemical properties, which strongly tie to
plant photosynthetic activity. This can explain
why the seasonality of ORS follows precipitation
in the tropical evergreen forests, since the soil
moisture deficit limits the photosynthetic activi-
ties during dry seasons, given that African
evergreen forests are still water-limited in gener-
al. It is also worth noting that all the ORS data
show the similar pattern including an LAI
product from SEVERI (Appendix B: Fig. B3).
Currently most satellite LAI products are derived
from VI or similar reflectance ratios based on
visible and NIR spectra. How to interpret these
derived LAI products in tropical evergreen
forests requires caution because they may not
be quantifying the actual leaf area (e.g., Doughty
and Goulden 2008).

MVRS data (mainly valid for Ku-dB) represent
leaf biomass and leaf water content for the top
portion of the canopy, with contribution from soil
moisture depending on soil fraction in a pixel.
For tropical forests, soil moisture has little
contribution for dB since little fraction of bare
soil is in the scene (Frolking et al. 2011, Guan et
al. 2012). Thus the dominating information of
Ku-dB is from leaf biomass. For deciduous
forests and woody savannas, leaf area/biomass
co-varies with canopy-level photosynthetic activ-
ity; this explains why dB strongly correlates and
also shares a similar seasonality with ORS in
these regions. For tropical evergreen forests, dB,
with more sensitivity to leaf biomass, character-
izes the leaf phenological evolution to the largest
extent.

This study is the first one to use remote sensing
to test and confirm the field-based finding (Yeang
2007a, b) that insolation intensity controls tropical
evergreen vegetation, i.e., the double annual
cycles of leaf-flushing in tropical evergreen forest
are synchronous with the annual bi-model
insolation intensity. The SWTOA-dB feature is
only found at 38 N–58 S because in this range the
vegetation types are homogenously tropical
evergreen forests (we exclude wetland pixels in
our analysis). Beyond this range, tropical ever-
green trees are mixed with more deciduous trees,
where the microwave signal follows precipitation
rather than SWTOA. Thus there is a transitional
range beyond the homogenous tropical ever-
green forest regions (38 N–58 S).

We interpret Ku-dB as the leaf biomass
trajectory, which implies that leaf-flushing syn-
chronizes with the insolation intensity peak.
Since the SWTOA almost has no inter-annul
variation, Ku-dB signals should also have little
inter-annual variation at its two initiation points
(corresponding to the two leaf-flushing times).
We find there is little inter-annual variation in the
Ku-dB initiation points given the noisy condition
of dB in the tropics (results not shown here). We
also observe that the double cycles of Ku-dB are
asymmetric, with the cycle from April to Sep-
tember much stronger than the cycle from
November to January. This also confirms the
field-based finding by Yeang (2007b), who
attributed the unequal solar radiation received
at the ground to the cloud covers in these two
periods. It is worth noting that there are
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relatively large uncertainties related to Ku-dB
data in the tropical evergreen forests as shown in
Appendix B: Fig. B1. We argue that the spatial
pattern of Ku-dB after the smoothing approach
reveals a continuous spatial structure rather than
some spatially random patterns, which implies
the existence of an underlying structure in the
Ku-dB signals.

Conclusion
In this paper, the seasonality of vegetation

functions (i.e., canopy photosynthesis capacity)
and structure (i.e., canopy leaf biomass changes)
in African tropical forests is investigated using
multiple remote sensing datasets from optical
and microwave sensors. The results reveal a
strong seasonality coupling between vegetation
function and structure for tropical deciduous
forests and woody savannas, which is controlled
by precipitation. Shortwave radiation at the top
of canopy, day-length, sunrise or sunset varia-
tions have limited control on the seasonal
evolution of tropical forests in Africa. For African
tropical evergreen forests, seasonality decoupling
of vegetation functions and structures are dis-
covered from optical and microwave sensors.
Canopy photosynthetic activity observed by ORS
follows precipitation seasonality due to the
deficit of soil moisture limiting plant biochemical
activity during dry seasons. Canopy-top leaf
biomass inferred from Ku-dB exhibits two leaf-
flushings over a year, synchronous with the two
peaks in insolation intensity, consistent with field
observations. A pan-tropical analysis across the
world with optical and microwave data is worth
conducting to reveal a complete picture of
tropical forest phenological patterns and their
controls. We further suggest more field cam-
paigns to collect large-scale tropical evergreen
forest phenology information in the pan-tropics
to verify our findings.
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SUPPLEMENTAL MATERIAL

APPENDIX A

Table A1. Abbreviations and explanations used in the paper.

Abbreviation Explanation

AVHRR Advanced Very High Resolution Radiometer
ERS European Remote-Sensing
ESA European Space Agency
ET Evapotranspiration
LAI Leaf Area Index
GIMMS Global Inventory Modeling and Mapping Studies
GISS Goddard Institute for Space Studies
GLC2000 Global Land Cover mapping for the year 2000
GPP Gross Primary Production
MEaSUREs NASA program ‘‘Making Earth System Data Records for Use in Research Environments’’
MVRS Microwave Remote Sensing
MODIS Moderate-resolution Imaging Spectroradiometer
MSG Meteosat Second Generation
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
ORS Optical Remote Sensing
SEVERI Spinning Enhanced Visible and Infrared Imager
SWCNP Shortwave downward radiation at the top of canopy; here it is equivalent to the shortwave

downward radiation on the surface
SWTOA Shortwave downward radiation at the top of atmosphere; here it is equivalent to the insolation

intensity at the top of atmosphere
TRMM Tropical Rainfall Measuring Mission
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APPENDIX B

Fig. B1. (A) Mean magnitude of annual cycles of Ku-dB (maximum value minus minimum value for a year) at
per-pixel level; (B) 99% confidence interval value of smoothed dB after applied the robust smooth algorithm
(Garcia 2010) at the per pixel level, which provides a quantitative characterization of the uncertainties of the
smoothed Ku-dB time series; (C) ratio of (B) over (A), which shows that the Ku-dB in equatorial Africa contains
relatively more uncertainties than Ku-dB in other regions; (D) some typical examples of different latitudes
(longitudes are all fixed at 208 E; latitudes are 108 S, 08, 108 N, and 208 N).
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Fig. B2. The power spectra of single annual cycle (first column) and double annual cycles (second column) for
the normalized time series of: GIMMS NDVI, C-dB, day-length, sunrise and sunset. For those regions with
pronounced single annual cycle (power spectra of single annual cycle .0.8), a sinusoid function T(t) ¼ !T þ
Acos(2pt" h) is fitted to the time series to estimate the optimal parameters !T, A and h simultaneously. The phase
information h of the corresponding datasets are shown in the third column.
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Fig. B3. Hovmöller diagrams of mean annual cycle with raw values (first column) and percentile/rank values
(second column) for: GIMMS NDVI, MODIS EVI, Ku- dB (dB), C-dB (dB), rainfall (mm/day), SWCNP (W/m2),
SWTOA at noon (W/m2), day-length (hours), sunrise (hour of the day) and sunset (hour of the day). All the
Hovmöller diagrams are based on transect across the latitude from 108 S to 208 N, averaging at the longitude from
208 E to 218 E.
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Fig. B4. Mean annual time series of the interested variables across the different latitudes from 68 N to 98 S. The
variables shown includes: EVI, Ku-dB (dB), precipitation (mm/day), and daily mean SWTOA (W/m2). The mean
annual time series are averaged for a square area with latitude width of 18 (centering at the latitudes from 68 N to
98 S), and with longitude width of 18 (all centering at 20.58 E).
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Fig. B5. Hovmöller diagrams of mean annual cycle with percentile (or rank) for Ku-dB from QuikSCAT (2000–
2009). All the Hovmöller diagrams are based on transects across the latitude from 108 S to 208 N, but the
longitudes vary from 188 E to 318 E. Hovmöller diagrams from 198 E to 278 E show similar patterns for vegetation
seasonality as we discussed in the paper for Ku-dB over tropical evergreen forests, and these regions are also
homogenous tropical evergreen forest regions.
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