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[1] Clarification of the coupled ecohydrological mechanisms that determine the spatial
pattern and structural characteristics of vegetation in water-limited landscapes remains a
vexing problem in both hydrological and vegetation sciences. A particular challenge is the
fact that the spatial pattern of vegetation is both a cause and effect of variation in
water availability in semiarid ecosystems. Here we develop a methodology to derive the
landscape-scale distribution of water balance and soil moisture in a patchy vegetation
mosaic based on the statistics of an underlying poisson distribution of individual tree
canopies and their accompanying root systems. We consider the dynamics of water
balance at a point to be dependent on the number of intersecting tree root systems and
overlapping tree canopies. The coupling of individual pattern to landscape-scale
distribution of soil water balance allows for investigations into the role of tree density,
average canopy size, and the lateral extension of tree root systems on the spatiotemporal
patterns of soil moisture dynamics, plant water uptake, and plant stress in a wide range of
open woodland ecosystems. Our model is applied to southern African savannas, and
we find that locations in the landscape that contain average vegetation structure
correspond to conditions of minimum stress across a wide range of annual rainfall and
vegetation densities. Furthermore, observed vegetation structural parameters are consistent
with an optimization that simultaneously maximizes plant water uptake while minimizing
plant water stress. Finally, the model predicts adaptive changes in the optimal lateral
extent of plant roots which decreases with increasing rainfall along a regional gradient in
mean annual precipitation.
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1. Introduction

[2] The structure of terrestrial vegetation communities is
strongly governed by the spatiotemporal distribution of
growth-limiting resources [Tilman, 1988]. However, plants
are not passive actors in this regard, and the biotic pattern of
vegetation serves to redistribute key abiotic resources such
as energy, water, and nutrients in important ways that are
critical to the dynamics of the community through space and
time. Therefore any theory regarding the structural config-
uration of plant communities must explicitly consider the
consequences of spatial vegetation pattern on the dynamics
of resource availability.
[3] Beginning with the analysis of spatial dynamics in

tropical forests [Denslow, 1987], and continuing through the
conceptualization of temperate [Runkle and Yetter, 1987]
and boreal forest [Bonan and Shugart, 1989] community

dynamics, it has become apparent that the nature of plant
structural pattern and the dynamics of resource availability
are highly interdependent [Tilman and Kareiva, 1997].
Although the forest community structure is often thought
to be determined by prevailing resource conditions (i.e.,
climate or soil age), it is now recognized that the forest
structure itself serves to modify resource availability. Per-
haps best known is the paradigm of gap dynamics, by which
species regeneration and subsequent patterns of canopy
emergence occur within the localized patches of higher
light availability formed by the death of a large canopy tree
[Shugart, 1984].
[4] Regrettably, the incorporation of coupled abiotic and

biotic determinants of resource availability into theories
regarding the dynamics of semiarid ecosystems is not as
well developed. Indeed, most initial approaches used to
explain the particular nature of semiarid vegetation com-
munity structure relied exclusively on the role of external
factors such as mean annual rainfall, or soil infertility
imposed by geologic constraints. Within a regional context,
these kinds of relationships often yield reasonable predic-
tions of savanna ecosystem structure [Sankaran et al., 2005;
Huxman et al., 2005]. However, it has also been recognized
that the role of vegetation itself on resource availability can
be critical in semiarid ecosystems [Archer et al., 1988] and
the strong control that individual plants can exert on local
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water balance is highlighted by the work of Seyfried et al.
[2005], who find substantial variation in deep drainage
under and between desert shrubs. Similarly, Ludwig et al.
[2005] demonstrate the variation in surface moisture redis-
tribution caused by the mosaic of vegetation patches and
interpatch areas in many semiarid ecosystems. On the basis
of these considerations, more recent spatial models of
savanna structure have taken the spatial structure of semiarid
ecosystems into account [Jeltsch et al., 1999]. However,
there remains a need to clarify the manner by which
vegetation self-organizes within semiarid landscapes, and
such clarification necessitates the development of conceptual
models for spatial pattern formation in savanna (and similar
dry woodland ecosystems). Research such as Breshears and
Barnes [1999] represents a significant step forward toward a
more unified conceptual model of interactions between plant
pattern and soil moisture dynamics in savanna and other
semiarid ecosystems.
[5] In our view, a significant challenge exists in coupling

individual-scale patterns to landscape organization. Here we
propose a simple model of soil moisture dynamics suitable
for application to heterogeneous vegetation landscapes,
such as those found in savannas or open woodlands. We
are particularly interested in developing a framework that
can generate hypotheses related to the causes and effects of
horizontal variation in soil moisture arising from the patchy
vegetation structure of individual tree canopies that is
characteristic of many semiarid ecosystems. Although our
presentation here focuses only on the effect of tree canopies
on soil moisture dynamics, our approach is easily general-
izable to the case of grass canopies only, or mixed tree-grass
communities.
[6] The modeling framework developed in this study is

applied to four landscapes in the Kalahari region of southern
Africa. These landscapes represent individual study sites
that span a regional gradient in average annual rainfall
between about 300 mm/yr in southern Botswana to more
than 900 mm/yr in western Zambia. Known as the Kalahari
Transect, this south-north rainfall gradient is found on
relatively uniform sandy soils [Thomas and Shaw, 1991],
and therefore provides an excellent case study of coupled
ecological and hydrological processes and their impact on
the development of spatial patterns in vegetation and soil
moisture. In the following sections, we will derive the
landscape model and present model results based on param-
eters of landscape structure, soils, and climate for a series of
savanna landscapes along the Kalahari transect. Site infor-
mation on the vegetation and climate of these four sites is
provided in Table 1.

2. Semiarid Vegetation Pattern

2.1. Poisson Distribution of Individual Trees

[7] In the simplest case, the spatial distribution of vege-
tation can be modeled as a homogeneous point process
[Batista and Maguire, 1998] of overlapping vegetation
canopies depicted in Figure 1a. The assumption that the
spatial distribution of trees results from a homogeneous
point process is here invoked only to develop an analyti-
cally tractable framework, even though it does not account
for the aggregated tree distribution typically observed in
savannas. Trees are represented as circles of random radius,
r, drawn from an exponential distribution with mean mr.
Tree centers are modeled as a 2-D Poisson process of rate
lt, where lt represents the mean number of centers per unit
area. Thus the number, nC, of canopies occurring at a

Table 1. Location and General Characteristics of Four Kalahari Transect Landscapes

Site

Location

Rainfall,a mm/yr

Vegetation Characteristics

Latitude Longitude Vegetation Type Percent Coverb

Tshane �24.17 21.89 365 Open Acacia savanna 14
Ghanzi �21.78 21.57 400 Acacia-Terminalia woodland 20
Pandamatenga �18.66 25.50 698 Baikea woodland 40
Mongu �15.44 23.25 879 Miombo woodland 65

aAnnual rainfall from station data [Scholes et al., 2002; Williams and Albertson, 2004].
bPercent woody vegetation determined from a combination of canopy mapping and densiometer measurements [Caylor et al., 2003; Scholes et al., 2002].

Figure 1. (a) Schematic of the 2-D Poisson model,
indicating the number of overlapping canopies in each
portion of the landscape; (b) depiction of a single tree’s
canopy (light shading) and its accompanying root system
(dark shading), where r is the canopy radius and R is the
root system radius such that at = R/r; (c) a representative
landscape, including tree canopies (solid lines) and root
system distributions (dashed lines).
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randomly chosen point (Figure 1a) has a Poisson distribu-
tion [Cox and Miller, 1965] of mean hnCi = ltmA, where mA
= 2pmr

2 is the expected area of an individual tree canopy.
The probability of having no trees at a given point is

P nC ¼ 0½ � ¼ e�2pltm2r ð1Þ

while the fractional canopy cover, fc, is given by

fc ¼ 1� P nC ¼ 0½ � ¼ 1� e�2pltm2r : ð2Þ

[8] From equation (2) it is clear that the specification of
lt and mr completely determines the particular landscape
configuration. The resulting relationship between the pa-
rameter lt of the Poisson process, the cover fraction, fc, and
the average tree radius, mr, are shown in Figure 2a.

[9] In this study we are interested in the interactions
between tree canopies, their accompanying root systems,
and their effect on the overall dynamics of soil moisture.
Therefore we extend the basic framework presented in
equation (2) to calculate the fraction of bare soil area
invaded by tree roots. Accordingly, we define at = mR/mr,
which is the ratio between root and canopy radii as shown in
Figure 1b. The value of at is taken to be a fixed property of
the vegetation in each landscape. From this definition we
can determine the fraction of soil not covered by roots
according to

fbR ¼ e�2plt a
2
t m

2
r ¼ 1� fcð Þa

2
t : ð3Þ

Finally, we also consider the fraction, ft, of soil invaded by
the roots outside the vertical projection of the canopy when
at 	 1, which corresponds to the gray dotted region in
Figure 1b. This value is given by

ft ¼ 1� fc � fbR ¼ 1� fcð Þ � 1� fcð Þa
2
t : ð4Þ

[10] The resulting relationship between the cover fraction,
fc, and the fraction of soil invaded by roots, ft, are shown in
Figure 2b. The distribution of trees and roots resulting from
the Poisson process (Figure 1c) is used to study the effect of
vegetation on the spatial patterns of soil moisture, which
determines the occurrence and severity of water stress in
semiarid vegetation. This approach makes it possible to
mechanistically investigate the relation between vegetation
patterns and the distribution of soil moisture, components of
water balance, and the occurrence of plant water stress.
Table 2 provides parameters of vegetation structure for the
four study landscapes. Tree density, lt increases across the
transect from south (Tshane) to north (Mongu), as does
average tree size, mr.
[11] The values of tree density and tree size in Table 2 are

taken from the same field sites in Table 1 where percent
woody cover was determined using mapping and densiom-
eter techniques. However, we note that there are slight
disagreements between the observed percent woody cover
in Table 1 and that predicted by the values of lt and mr
within a Poisson landscape (Table 2), particularly at sites
with intermediate rainfall. This discrepancy is due to the
tendency for vegetation to form aggregated patterns in many

Figure 2. (a) Dependence of fractional cover, fc, on
density, lt (ind/m

2), and expected tree radius, mr (meters).
(b) Dependence of the region of bare soil exploited by
canopy roots, ft, on fc and the ratio of root radii to tree radii,
at.

Table 2. Site-Specific Rainfall and Vegetation Structure Para-

meters Used in the Landscape Soil Moisture Model

Site

Rainfalla Vegetation Structureb

l, day�1 a, mm lt, ind/m
2 mr, m Percent Coverc

Tshane 0.150 10 0.018 1.62 17
Ghanzid 0.175 10 0.030 1.65 27
Pandamatenga 0.290 10 0.043 1.70 37
Mongu 0.380 10 0.091 1.85 65

aRainfall parameters taken from the presentation of Porporato et al.
[2003].

bVegetation parameters from Caylor et al. [2003].
cPercent cover values determined using lt, mr, and equation (2).
dGhanzi vegetation data from unpublished field observations (K. K.

Caylor, 2005).
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savanna landscapes [Caylor et al., 2003], which our current
model does not address. An extension of our approach
would be to investigate the degree of spatial clumping on
landscape soil moisture within the framework we provide.
However, our focus here remains the simplest possible
description of vegetation structure, i.e., a null model of
spatially random vegetation distribution.

2.2. A Spatially Distributed Landscape Model

[12] A theoretical framework is developed for estimating
landscape-scale soil moisture variation using the joint
distribution of tree canopies and tree roots within a semiarid
landscape. Under the assumption that trees are distributed
randomly according to a 2-D Poisson process and have radii
drawn from an exponential distribution with mean radius mr,

we noted above that the distribution of canopy overlaps
follows a Poisson distribution, with an average number of
canopy overlaps,

hnCi ¼ 2pm2rlt: ð5Þ

[13] Additionally, it follows from our earlier discussion
that the expected number of overlappings of root systems is

hnRi ¼ 2p mratð Þ2lt ; ð6Þ

where at is the fixed ratio of root radius to canopy radius,
which we defined previously. Figure 3 depicts the expected
number of canopies and root systems at a point for
landscapes corresponding to a range of densities, lt, and
root ratios, at, with constant average canopy radius, mr = 2
meters.
[14] The probability of finding a location in the landscape

with nR overlapping root systems and nC overlapping
canopies is the joint distribution of nR and nC, notated as
P(nR \ nC). Under the condition that the specified ratio of
root to canopy areas is set to be one (i.e., at = 1) so that all
root systems are exactly the same size as all canopy areas, it
is apparent that P(nR \ nC) = P(nR) = P(nC), since each root
system is overlain by a single canopy area with probability
1. However, when the specified value of at 6¼ 1, the joint
probability distribution of nR and nC is derived as

P nR \ nCð Þ
P nRjnCð ÞP nCð Þ; if at < 1

P nC jnRð ÞP nRð Þ; if at > 1

8<
: ð7Þ

where P(nCjnR) and P(nRjnC) are the conditional probability
of nC on nR and viceversa respectively, while P(nC) and
P(nR) are Poisson distributions with mean values of hnCi
and hnRi, as described above. The derivation of the
conditional probabilities for P(nCjnR) and P(nRjnC) proceed
in a similar manner. Here we focus on P(nCjnR), which is
determined for cases where root systems are always larger
than canopy areas (i.e., at 	 1), the most likely condition for
the kinds of semiarid ecosystems considered here. Follow-
ing the approach presented in the Appendix, we define the
quantity t = 1/at

2, and find that the general form of the
conditional probability P(nCjnR) is a binomial distribution
with mean nRt and variance nRt(1 � t) so that

P nC jnRð Þ ¼ nR
nC

� �
tnC 1� tð Þ nR�nCð Þ

nC ¼ 0; 1; :::; nRð Þ; ð8Þ

where

nR
nC

� �
¼ nR!

nC ! nR � nCð Þ! ð9Þ

is the binomial coefficient. The expression of P(nCjnR) in
equation (8) is now used to calculate P(nC \ nR) using
equation (7), given that P(nR) is the Poisson distribution of
the number of root system occurrences given by

P nRð Þ ¼
2ltpm2r a

2
t

� �nR
e�2ltpm2r a

2
t

nR!
nR ¼ 0; 1; :::ð Þ: ð10Þ

Figure 3. Expected number of (a) landscape-scale root
systems and (b) tree canopies for a range of densities, lt
(ind/m2), and rooting ratios, at, given a constant average tree
radius, mr = 2 m. The expected number of root system
intersections depends on both canopy density and rooting
ratio, while the expected number of canopy intersections
only depends on tree density.
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[15] Figure 4 provides the joint distribution of canopies
and roots according to equation (7) with lt = 0.05, mr = 2
meters, and at = 2. Having derived and verified the
distribution P(nC \ nR), it is now necessary to connect the
distribution of canopies and root systems in the landscape to
the soil moisture dynamics which occur therein.

3. Probabilistic Soil Moisture

[16] Following the presentations of Laio et al. [2001] and
Rodriguez-Iturbe et al. [1999b], we characterize the daily
soil moisture balance according to the stochastic arrival of
rainfall events and the rate of soil moisture losses from the
active soil given by

nZr
ds tð Þ
dt

¼ J s tð Þ; t½ � � c s tð Þ½ �; ð11Þ

where n is the soil porosity, Zr is the depth of the active soil
layer, and s(t) is the relative soil moisture content (0 
 s(t)

 1). The term J[s(t); t] is the stochastic portion of the soil
moisture balance, and represents the amount of rainfall that
infiltrates the soil column which is rainfall, R(t), less the
sum of interception, I(t) and the rate of runoff, Q[s(t); t].
The deterministic loss function c[s(t)] includes evaporation,
E[s(t)], transpiration, T[s(t)], and vertical drainage L[s(t)],
out the bottom of the active soil layer.

3.1. Rainfall and Interception

[17] Rainfall, R(t), is modeled as a marked Poisson
process of storm arrivals at rate l (day�1), with each storm
having a random depth, d, that is exponentially distributed
with mean a (mm). Interception, I(t), is the amount of
rainfall, D (mm), that does not reach the soil surface due to
canopy storage, and is accounted for by modifying the rate
of storm occurrence (l0 = le�D/a) for locations with
canopies [Rodriguez-Iturbe et al., 1999a]. We use an
empirical estimation of canopy interception given by

D ¼ LAIC � h� nC ; ð12Þ

where LAIC is the leaf area index of vegetation canopies
(Table 3), and h is a characteristic amount of interception
per unit leaf area which we take to be equal to .2 mm
[Scholes and Walker, 1993]. In this way, although we
consider rainfall to be a spatially homogenous processes
within the landscape, we note that interception (and
subsequent infiltration) rates vary according to the number
of canopies (nC) present at each location within the
landscape. Whenever rainfall depth exceeds the storage
capacity (nZr) of the rooting layer, we assume that the
excess is converted to surface runoff. Runoff does not play a
significant role in this study, as both infiltration-excess
runoff and saturation-excess overland flow seldom occur,
due to the presence of deep sandy soils with relatively high
infiltration capacity and deep water tables.

3.2. Effect of Canopies and Roots on
Evapotranspiration

[18] Our goal is to determine the distribution of soil
moisture, rates of evaporation, plant water uptake, and plant
water stress within a structurally heterogeneous landscape
of tree canopies and their accompanying root systems.
Therefore we formulate representations of evaporation and
plant water uptake governed by nC and nR. In particular, we
recognize that the parameter nR determines the local rate of
soil water uptake, while nC controls the evaporative loss of
soil moisture and regulates the partitioning of evapotrans-
piration into soil evaporation and plant water uptake. The
vertical root profile is here assumed to be uniform and
individual plant root uptake is evenly partitioned throughout
the thickness of the soil layer, Zr. We assume that canopies
reduce energy available for evaporation due to shading
effects according to an exponential distribution (e.g., Beer’s
law), such that

fE nCð Þ ¼ e�knC ð13Þ

where fE is the fraction of incoming energy available for
bare soil evaporation under nC canopies and k is an
extinction coefficient of evaporative demand that we take to
be equal to 0.35 [Brutsaert, 1982]. The number, nC, of
overlying canopies determines the fraction, 1 � fE, of net
solar irradiance intercepted and therefore available for
transpiration from the plant stomata.
[19] Because root water uptake depends on the amount of

energy incident on each root system’s corresponding cano-
py, we must recognize that plant water extraction rate from
the soil is constrained by the total energy absorbed by

Figure 4. Joint distribution of canopy and root systems,
P(nC \ nR), for the case lt = 0.05 ind/m2, mr = 2 m, and
at = 2. Because at > 1, overlapping root systems are more
frequent than overlapping tree canopies.

Table 3. Parameters Used in the Landscape Soil Moisture Model

and Their Sources

Parameter Value Source

PET 6 mm/d Bahlotra [1987]
LAIC 2.0 m2/m2 Williams and Albertson [2004]
Ks 2000 mm/d Williams and Albertson [2004]
Zr 600 mm Hipondoka et al. [2003]
s* 0.275 Williams and Albertson [2004]
swilt 0.125 Williams and Albertson [2004]
sh 0.04 Porporato et al. [2003]
sfc 0.35 Porporato et al. [2003]
b 12.5 Laio et al. [2001]
n 0.40 Williams and Albertson [2004]
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individual plant canopies. To accommodate the role that
canopy light interception plays in determining root water
uptake, we use equation (13) to estimate the amount of
fractional energy absorption per canopy (j) for nC cooccur-
ring canopies, which we denote as

j ¼ 1� fE nCð Þ
nC

: ð14Þ

[20] In order to estimate individual water uptake rates for
nR separate overlapping root systems, it would be necessary
to know j for each canopy associated with each root
system. However, given our statistical description of the
landscape, it is apparent that root systems existing at a
certain point can belong to trees whose canopies have no
shading effect on the same point. Therefore the exact value
of j for the canopy associated with a particular root system
at a random location within the landscape is unknown in our
modeling framework. In the absence of specific values of j
for each location in the landscape, we can instead determine
the expected amount of energy absorbed per canopy, j,
which we use to constrain water uptake per root system. The
expected fraction of energy absorbed per canopy is deter-
mined according to the expected value of nC at locations
where canopies are present and is given by

j ¼
X1
nC¼1

1� fE nCð Þ
nC

	 

P1 nCð Þ; ð15Þ

where P1(nC) is the Poisson distribution of the number of
canopies renormalized for the range nC 	 1 according to

P1 nCð Þ ¼ P nC ¼ 1:::1ð Þ
1� P nC ¼ 0ð Þ : ð16Þ

[21] Recognizing that each root system is associated with
a single tree canopy, we use equation (15) as a measure of
the energetic constraint on root uptake demand per canopy.
Therefore we approximate the fraction of potential water
uptake that takes place at a location containing nR root
systems (connected to nR separate canopies) according to

fT nRð Þ ¼ j � nR: ð17Þ

3.3. Soil Moisture Loss Function

[22] The values of fE(nC) and fT(nR) determine the
relative amounts of evaporation and plant water uptake at
a location with nC canopies and nR root systems. At any
given location, the sum of evaporation and plant water
uptake may exceed the potential evapotranspiration rate
(PET mm/day). This is particularly true in open areas that
contain many root systems under conditions of high water
availability. However, the potential evapotranspiration rate
does provide an upper bound on the landscape average
evapotranspiration. In addition, the rate of evaporation and
plant water uptake both depend on the available soil
moisture at any given time. To accommodate the role of
soil moisture limitation on evaporation, we assume that
evaporation linearly increases from zero at the soil hygro-
scopic point, sh, to a maximum evaporation rate, fE(nC) �

PET, at field capacity, sfc. Similarly, we assume that water
uptake from roots (i.e., transpiration) exhibits a linear
response to soil moisture availability, increasing from zero
at the plant wilting point, sw, to the maximum, fT(nR) �
PET, at the point of incipient stomatal closure, s*. At soil
moisture values above s*, water uptake proceeds at the
maximum rate, just as evaporation proceeds at the maxi-
mum rate above field capacity. Finally, above field capacity,
we consider leakage loss from the lower boundary of the
soil layer. Here we determine leakage according to Laio et
al. [2001], based on the saturated hydraulic conductivity, Ks

(mm/day), and on the soil water content as given by

L sð Þ ¼ Ks

eb s�sfcð Þ � 1

eb 1�sfcð Þ � 1
; if s > sfc; else L sð Þ ¼ 0

� �
; ð18Þ

with b being a parameter (see Table 3) dependent on soil
texture [Laio et al., 2001].
[23] The overall loss function, r(s), due to evaporation,

uptake, and leakage is a piecewise continuous function
increasing from zero at the hygroscopic point (sh) to a
maximum rate of soil water loss through evaporation and
root uptake which occurs at field capacity (sfc). Above field
capacity, nonlinear leakage effects begin to dominate the
rate of water loss from the soil layer. The complete form of
the loss function is given by

r sð Þ ¼ c sð Þ
nZr

¼ E sð Þ þ T sð Þ þ L sð Þ
nZr

¼

0; 0s 
 sh;

he
s� sh

sfc � sh
; sh < s 
 sw;

he
s� sh

sfc � sh
þ ht

s� sw

s*� sw
; sw < s 
 s*;

he
s� sh

sfc � sh
þ ht; s* < s 
 sfc;

he þ ht þ m eb s�sfcð Þ � 1
� �

; sfc < s 
 1;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

;

ð19Þ

where

he ¼ fE nCð Þ � PET

nZr
; ð20Þ

ht ¼ fT nRð Þ � PET

nZr
; ð21Þ

and

m ¼ Ks

nZr eb 1�sfcð Þ � 1
� � : ð22Þ

3.4. Probability Distribution of Soil Moisture at a Point

[24] From the previous sections, we can define the soil
water balance through a stochastic differential equation
(equation (11)) with a deterministic loss function (equation
(19)) depending on the number of canopies (nC) and

6 of 13

W07424 CAYLOR ET AL.: ECOHYDROLOGY OF HETEROGENEOUS LANDSCAPES W07424



roots (nR). The solution of this stochastic differential equa-
tion proceeds in the same manner as by Laio et al. [2001],
and yields the steady state probability distribution of relative
soil moisture:

p sð Þ ¼

e�gs s� shð Þ
l0 sfc�shð Þ

he
�1

sh < s 
 sw;

C2 � e�gs s� shð Þ s*� swð Þhe þ sfc � sh
� �

s� swð Þht
� �e�1

sw < s 
 s*;

C3 � e�gs she þ sfcht � sh he þ htð Þ
� �l0 sfc�shð Þ

he
�1

s* < s 
 sfc;

C4 � e
l0�gwð Þs

w he þ ht þ m eb s�sfcð Þ � 1
� �� �l0

bw�1

sfc < s 
 1:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

[25] The terms C2, C3, and C4 in equation (23) are given
by

C2 ¼ sw � shð Þ
l0 sfc�shð Þ

he
�1 he s*� swð Þ sw � shð Þð Þ1�e; ð24Þ

C3 ¼ C2 � he s*� shð Þ s*� swð Þ þ ht sfc � sh
� �

s*� swð Þ
� �e�1

� s*he þ sfcht � sh he þ htð Þ
� �1�l0 sfc�shð Þ

he ; ð25Þ

C4 ¼ C3 � e�gsfc�
sfc l0�gwð Þ

w he þ htð Þ
l0
bwþ1 � sfc he þ htð Þ

�
� sh he þ htð ÞÞ

l0 sfc�shð Þ
he

�1: ð26Þ

[26] Finally, the terms e and w in the above equations are
defined as

e ¼
l0 sfc � sh
� �

st � swð Þ
he s� � swð Þ þ ht sfc � sh

� � ; ð27Þ

and

w ¼ he þ ht � m: ð28Þ

[27] Figure 5 demonstrates some examples of steady state
probability distributions of relative soil moisture in both
bare and vegetated areas along the Kalahari transect. As
expected, the model predicts increased soil moisture values
in bare locations (with neither roots or canopies) as rainfall
rates increase from Tshane (dry) to Mongu (wet), according
to Table 1. However, the presence of average vegetation
structure (i.e., nC = hnCi & nR = hnRi) in each landscape
leads to a much reduced distribution of relative soil mois-
ture especially in the most northern site. Furthermore, the
increase of vegetation density and size across the rainfall
gradient (Table 2) closely matches the increase in rainfall. It

is this combination of increasing rainfall rates and increas-
ing vegetation density that leads to similar predictions of
soil moisture conditions across the rainfall gradient. The
results suggest that across the transect, increases in resource

availability are matched by increases in resource exploita-
tion by the vegetation. Viewed in this manner, the density
and size of vegetation may be seen to represent a structural
configuration that maintains the soil moisture distribution at
a level that is just above a critical stress threshold. In the
following section we examine the patterns of landscape
average water balance across the four study sites.

4. Landscape Average Water Balance

[28] For a given location with nC canopies and nR root
systems, we use the steady state probability of relative soil
moisture, p(s), defined in the previous section, to determine
average values of the water balance,

hR nC ; nRð Þi ¼ hE nC ; nRð Þi þ hT nC ; nRð Þi þ hL nC ; nRð Þi ð29Þ

where hR(nC, nR)i is the average rainfall rate (mm/day), and
hE(nC, nR)i, hT(nC, nR)i, and hL(nC, nR)i are the steady state
average rates of evaporation, root water uptake (i.e.,
transpiration), and leakage respectively (mm/day). These
quantities are given by

hR nC ; nRð Þi ¼ a� l0 ð30Þ

hE nC ; nRð Þi ¼ he � nZr �
Z sfc

sh

s� sh

sfc � sh
p sð Þds ð31Þ

hT nC ; nRð Þi ¼ ht � nZr �
Z s*

sw

s� sw

s*� sw
p sð Þdsþ

Z 1

sfc

p sð Þds
 !

ð32Þ

hL nC ; nRð Þi ¼ m� nZr �
Z 1

sfc

eb s�sfcð Þ � 1
� �

p sð Þds: ð33Þ

[29] The landscape averages of soil moisture, hsi, tran-
spiration, hti, evaporation, hEi, and leakage loss, hLi,

ð23Þ
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depend on the joint distribution of canopies and roots, P(nC
\ nR) according to

hsi ¼
X
nC ;nR

P nC \ nRð Þhs nC ; nRð Þi; ð34Þ

hEi ¼
X
nC ;nR

P nC \ nRð ÞhE nC ; nRð Þi; ð35Þ

hTi ¼
X
nC ;nR

P nC \ nRð ÞhT nC ; nRð Þi; ð36Þ

hLi ¼
X
nC ;nR

P nC \ nRð ÞhL nC ; nRð Þi: ð37Þ

[30] Figure 6 shows the relative contributions of evapo-
ration, transpiration, and leakage to the soil moisture losses
in different landscapes across the Kalahari transect. In this
analysis, the rainfall, tree density and canopy size parame-
ters are those measured in the field, while the value of at is

assumed equal to 2 in each landscape. As expected, due to
the dry soil moisture conditions, leakage is negligible in all
landscapes, while the relative importance of transpiration
increases (with respect to evaporation) in the south-to-north
direction due to the presence of denser canopies (see
Table 2). We now turn to measures of plant water stress
and the degree to which vegetation structural patterns in
Kalahari landscapes are coorganized around resource use
and stress avoidance.

5. Plant Water Stress and Stress-Weighted
Plant Water Uptake

[31] At each location in a landscape containing nC can-
opies and nR roots, we consider the water stress distribution
according to the frequency and magnitude of excursions of
the relative soil moisture below the critical value of s* that
corresponds to the point at which plants begin to close their
stomata. Porporato et al. [2001] review the physiological
impacts of reduced water variability on plant performance
and the onset of plant water stress. In order to account for

Figure 5. Probability distribution, p(s), of relative soil moisture for a point containing the average
vegetation structure (solid lines) and bare soil (dashed lines) within four Kalahari landscapes. Model
parameters are provided in Tables 2 and 3. The value of at is assumed to be 2 in all four landscapes. In the
absence of any canopies or roots the average relative soil moisture increases across the four landscapes
with increasing rainfall from Tshane to Mongu. However, the average number of overlapping canopies
and root areas also increases with greater values of tree density and average tree size (Table 2 and
Figure 3). The result is similar distributions of relative soil moisture for locations with average vegetation
structure in each landscape across the rainfall gradient.
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the effects of increasing soil moisture deficit on plant
physiological performance, we adopt the water stress for-
mulation first proposed by Rodriguez-Iturbe et al. [1999a],
which determines plant water stress, x, according to

x sð Þ ¼

1 s 
 sw

s*�s

s*�sw

� �q
sw < s 
 s*;

0 s > s*;

8>>>><
>>>>:

ð38Þ

where q is a measure of nonlinearity in the relationship
between relative soil moisture deficit and plant stress
response, here taken to be equal to 2 following the
discussion of Porporato et al. [2001].

5.1. Stress-Weighted Plant Water Uptake

[32] Any measure of ‘‘optimal’’ conditions for plant water
use must appropriately balance maximization of resource
use with minimization of stress occurrence. For example, as
the average root ratio (at) increases, an individual plant may
be able to increase its plant water uptake rate. However, the
increased number of overlapping roots associated with an
increase in plant root ratio (Figure 3), leads to higher
landscape average uptake rates and more rapid onset of
stress conditions whenever water becomes limiting. To
relate these conditions to the soil and vegetation parameters,
we define an average stress-weighted plant water uptake,
hzi, as the product of the average plant water uptake rate,
hTi, and the complement of the average plant water stress, 1
� hxi, so that

hzi ¼ hTi 1� hxi½ �; ð39Þ

where hzi takes units of mm/day. This formulation of hzi
reflects the principle that resources obtained under stressed
conditions have a greater cost (and therefore less value) than
resources obtained under stress-free conditions. As average
stress increases at a given average water uptake level, the
value of the resulting average stress-weighted plant water
uptake decreases.
[33] In each landscape, there is a large degree of structural

heterogeneity from point to point within the landscape; we
seek to understand how plant water stress and rates of plant
water uptake vary within the landscape at various locations
representing a range of vegetation structural configurations.
We define three characteristic vegetation structures that can
be compared across each of the four study landscapes. The
first is an ‘‘open’’ location, where the number of canopies is
zero, and the number of roots present is simply the land-
scape average number of roots, so that nC = 0 and nR = hnRi.
The second location is an average location, where nC = hnCi
and nR = hnRi and the third is an ‘‘above average’’ location,
where nC = 2hnCi and nR = 2hnRi.
[34] The effect of each of these vegetation structural

configurations on steady state average stress is shown in
Figure 7. In each landscape, locations with an ‘‘average’’
vegetation structure correspond to points in the landscape
that exhibit a lower amount of stress than locations with
either less vegetation structure or points with greater den-
sities of roots and canopies. Because canopies reduce soil
evaporation rates (see equation (13)), locations with few
canopies (i.e., ‘‘open’’ areas in Figure 7) correspond to
locations with high rates of evaporation. These areas expe-
rience rapid depletion of soil moisture after rainfall events.
In contrast, locations with a large number of canopies and

Figure 7. Steady state average values of the daily relative
plant stress, hxi, for locations containing three different
structural configurations in four Kalahari landscapes. Mean
annual rainfall increases from Tshane to Mongu according
to Table 1. Model paramaters taken from Tables 2 and 3.
Black bars indicate stress conditions at an open location (no
canopies); gray bars indicate locations with an average
number of canopies and roots, and white bars indicate a
location with twice the average number of canopies and
roots within each landscape. Across all landscapes, loca-
tions with the average structure exhibit the lowest average
stress.

Figure 6. Model predictions of the relative contribution of
plant water uptake (white bars), evaporation (gray bars), and
leakage (black bars) to the average water balance of four
landscapes within the Kalahari region of southern Africa.
Annual rainfall increases from an average of 365 mm/yr at
Tshane to 850 mm/yr at Mongu. Model parameters are
provided in Tables 2 and 3, and at is assumed to be equal to
2 in each landscape.
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roots cause both a significant reduction in throughfall (see
equation (12)) as well as increased plant water uptake
(equation (17)). At each site, the landscape average structure
represents a balance between overextraction by the atmo-
sphere and overexploitation by the vegetation, leading to
minimum values of stress at these locations.
[35] Figure 8 shows the dependence of the steady state

average stress-weighted plant water uptake rate, hzi, on the
local values of nC and nR for each landscape. Only combi-
nations of nC and nR that correspond to values of P(nR \ nC)
	 10�5 are shown. The range of possible structures

increases in northern landscapes due to the greater density
and size of individual trees (Table 2). Interestingly, con-
ditions of maximum stress-weighted plant water uptake
rates occur for the same combination of root and canopy
layers in each landscape. However, the magnitude of hzi
changes along the rainfall gradient, with the highest values
occurring in more humid landscapes.

5.2. Optimal Landscape Structural Configurations

[36] We use the expression of the joint probability of nC
and nR to calculate the landscape average value of stress-

Figure 8. Model predictions of the steady state average stress-weighted plant water uptake, hzi,
according to the number of canopies, nC, and root systems, nR, co-occurring within four Kalahari
landscapes for all conditions where P(nR \ nC) 	 10�5. All simulations were conducted using observed
tree densities, observed average canopy size, and assuming a constant root ratio of 2 for all four
landscapes. In each landscape, the maximum stress-weighted plant water uptake occurs in the same
combination of roots and trees canopies, although the maximum value increases from southern
landscapes (Tshane) to northern landscapes (Mongu). The point representing the landscape average
number of canopies, hnCi, and roots, hnRi, is marked by an open circle in each plot.
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weighted plant water uptake, hzi, across the Kalahari
rainfall gradient. In particular, we investigate the depen-
dence of hzi on the landscape-scale vegetation structural
parameters at and lt. Figure 9 shows the relation between
average stress-weighted plant water uptake and the root-to-
canopy ratio, at. As at increases, both water uptake and
water stress increase, due to the enhanced ability of plants to
exploit the soil water resources. At a critical value of at for
each landscape, the increase in water stress associated with
larger root areas offsets the increase in plant water uptake
and the value of hzi begins to decrease. This fact explains
the existence of an optimal value of at in Figure 9 where hzi
is maximum. The optimal root-to-canopy ratio, at, decreases
with increasing values of mean annual precipitation, sug-
gesting that sparse semiarid trees benefit from lateral root
growth more than the denser woody vegetation growing in
subhumid environments.

[37] Figure 10 shows the dependence of the landscape-
averaged value of stress-weighted plant water uptake, hzi
mm/day, on tree density, lt (ind/m

2). Plant water uptake
increases with the tree density, while water stress initially
decreases with lt (i.e., for low values of lt), due to the effect
of shading on the soil water balance. As a result, an optimal
value of tree density exists, which is associated with
maximum stress-weighted plant water uptake. This optimal
value of lt is found to be close to the tree densities observed
in the field, suggesting that lt changes along the rainfall
gradient to optimize the use of the water resources.

6. Conclusion

[38] Our model incorporates the effect of tree canopies
and tree root systems on the local dynamics of soil moisture
at a point in a landscape. We have derived the distribution of
the number of intersecting canopies and root systems within

Figure 9. Effect of changing root ratio, at, on model
predictions of the landscape-averaged distribution of stress-

weighted plant water uptake, hzi (mm/d), within four
Kalahari landscapes. The landscape-averaged stress-
weighted plant water uptake is determined according to
the product of landscape average daily plant water uptake,
hti, and the complement of the landscape average daily
water stress, (1 � hxi) (see equation (39)). In each of the

four landscapes the maximum landscape-averaged stress-
weighted plant water uptake (open circle) occurs for
increasingly lower values of at as rainfall rates increase,
suggesting adaptive changes in the optimal size of lateral
root extension across the rainfall gradient.

Figure 10. Effect of changing tree density, lt, on
predictions of the landscape-averaged distribution of
stress-weighted plant water uptake, hzi, within four
Kalahari landscapes. All simulations are conducted using
the estimated optimal values of root ratio, at, determined
from Figure 9. Open circles represent the actual density of
trees from previous field observations [Caylor et al., 2003]
and unpublished data on Ghanzi vegetation. In each
landscape the observed density of trees corresponds to a
landscape-averaged stress-weighted plant water uptake that
is at or just below maximum values across a wide range of
possible tree densities.
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a landscape based on the density of trees, the size of tree
canopies and the relative size of root systems versus canopy
areas. From the joint distribution of overlapping canopies
and root systems, we are able to derive the distribution of
mean soil moisture.
[39] This framework is used to investigate the relation

between vegetation structure and the spatial dynamics of
soil moisture in water-limited ecosystems. Through the
application to four field sites along the Kalahari Transect,
it is shown that (1) at each site, locations that contain the
average vegetation structure (in terms of overlapping can-
opies and roots) also correspond to conditions of minimum
stress, (2) there is an optimal root-to-canopy ratio that
maximizes stress-weighted plant water uptake and this
optimal value increases along an increasing aridity gradient,
and (3) for a given root to canopy ratio, there is an optimal
tree density associated with maximum stress-weighted plant
water uptake. Taken as a whole, these results emphasize the
important role that lateral roots play in determining the
spatial patterns of soil moisture within semiarid ecosystems,
as well as the need for additional data regarding changes in
lateral root distribution associated with varying patterns of
tree density and rainfall in water-limited ecosystems.
[40] The present work has presented a framework for

connecting the distribution of individual plants to land-
scape-scale water balance, soil moisture dynamics, and
plant water stress. We have used the model of a spatially
random distribution as our starting point, but the exploration
of landscape distributions of soil moisture and, more criti-
cally, plant water stress under varying nonrandom patterns
of vegetation can now be permitted through the extension of
the analytical approach provided here into actual observed
vegetation patterns.

Appendix A: Joint Distributions of Canopy
and Root Occurrences

[41] In order to derive the landscape patterns of overlapping
tree and root distributions, it is necessary to know the joint
distribution of root and canopy occurrences. If root systems
and tree canopies were distributed randomly with respect to
each other, the derivation of the joint distribution of the
number of canopy and root overlappings would be prohibi-
tively complex. However, because each tree canopy is asso-
ciated with a specific root system, and the center of the
individual’s canopy and root system share a common location
(i.e., the tree stem), it is possible to derive the joint distribution
of canopy and root occurrences. For a landscape with at 	 1,
this is done using the conditional probability of the number of
tree canopies occurring given a specified number of over-
lapping root systems, defined as P(nCjnR) in equation (7).
[42] Before proceeding, we note the dependence of the

joint distribution of roots and canopies, P(nR \ nC), on the
conditional probability P(nCjnR) when the specified value of
at is greater than 1 (c.f. equation (7)). This dependence
arises from the consideration that when root radii are always
larger than canopy radii, the complete canopy area of each
individual is entirely underlain by its corresponding root
system. For this reason, it is not possible for the number of
canopies occurring at a random location to exceed the
number of root systems at the same location. Therefore,
when at 	 1, the number of cooccurring root systems (nR)
represents the maximum number of cooccurring canopies

(nC) that can occur at each location, so for any random
location in the landscape,

nC 
 nR; if at 	 1: ðA1Þ

[43] The possible number of canopies that can be present
at a location with nR roots is simply 0 . . . nR. In addition, for
any value of nR, it is necessary that the sum of all individual
probabilities of nC = 0, 1, . .nR must total 1, so thatXnR

nC¼0

P nC jnRð Þ ¼ 1: ðA2Þ

[44] Given the conditions specified in equation (A1) and
equation (A2), we demonstrate the derivation of the condi-
tional probability, P(nCjnR), for any combination of nR and
nC. We begin with the simplest possible scenario, which is
the one arising from a location with zero root systems (i.e.,
nR = 0). Since the number of canopies present must be less
than or equal to the number of root systems present (see
equation (A1)), it follows that if nR is zero, then nC must
also be zero. Therefore we can express the conditional
probability of having no canopies given the presence of
no roots as P(nC = 0jnR = 0) = 1. Furthermore, the the
conditional probability of having i number of canopies
given the presence of no roots is P(nC = ijnR = 0) = 0 for
all values of i 6¼ 0.
[45] Next, we consider the case of a random location in

the landscape where only a single root system is present
(i.e., nR = 1). Equation (A1) specifies that when nR = 1, the
number of canopies present can be equal to either 0 or 1,
which greatly constrains the possible scenarios we must
consider. In addition, the problem is further simplified by
the recognition that when nR = 1 (and at 	 1), the point
under consideration is necessarily considering the root
system and associated canopy area of a single individual
tree. Therefore it is sufficient to determine the relative
probabilities of being ‘‘not under’’ versus ‘‘under’’ an
individual’s canopy (i.e., nC = 0 versus nC = 1) given that
a point is located within a single individual’s root system
(nR = 1). These two possibilities are expressed as the
probability of finding a location where only the root system
is present, but no canopy is present, P(nC = 0jnR = 1), or a

Figure A1. Comparison of numerical and analytical
values of P(nR \ nC) for nC 
 10 and nR 
 10, when l =
0.0100, mr = 5 m, and at = 2.
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location where both the canopy area and root systems are
present, P(nC = 1jnR = 1). The probability of being in a
portion of an individual’s root system that is underlain by its
canopy is determined by the ratio of the canopy area to root
system area for each individual, which has already been
defined as 1/at

2. For convenience, we define t = 1/at
2, so that

the probability of being in the portion of an individual’s root
system that is under its canopy, is P(nC = 1jnR = 1) = t. In
contrast, the probability of being outside the canopy area of
an individual given the presence of the individual’s root
system is P(nC = 0jnR = 1) = (1 � t). According to equation
(A2), it is required that the sum of P(nC = 0jnR = 0) and
P(nC = 1jnR = 1) must be 1, which is met by t + (1 � t) = 1.
[46] Next, we examine the case of nR = 2, which specifies

the possible number of present canopies to be 0, 1, or 2.
Because the probabilities of being under and between each
of the canopy areas associated with the two overlapping root
systems are independent, the probability of both canopies
occurring over the pair of overlapping roots (i.e., P(nC =
2jnR = 2)) is t2. Similarly, the probability of neither canopy
occurring, P(nC = 0jnR = 2), is simply (1 � t)2. However,
the probability that only one canopy overlaps the two root
systems is the product of the independent probabilities that
one canopy is present (t) and the other is not (1�t). Since it
does not matter which canopy is present, the total condi-
tional probability of P(nC = 1jnR = 2) is 2(1 � t)t. As with
the case of nR = 1, equation (A2) must be true so that t2 +
2(1 � t)t + (1 � t)2 = 1.
[47] Following this approach, we can define the probabil-

ity of P(nCjnR) for all possible combinations of nR and nC. We
find that the conditional probability, P(nCjnR), is a binomial
distribution as shown in equation (8). A numerical simulation
of the 2-D poisson process allows for an approximation of
P(nR \ nC). Simulation results confirm our analytical deri-
vation of P(nR \ nC), which we compare to the numerical
distribution derived from a simulated poisson process.
Figure A1 demonstrates the high agreement between the
numerical and analytical solutions. As expected, the values of
the numerical and analytical solutions of P(nCjnR) for the
range nC 
 10 and nR 
 10 plot on a 1:1 line.
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