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Abstract

The miombo woodlands of southern Africa are one of the most extensively burned biomes in the tropics. The detectability of understory

burns in these woodlands was assessed with a sensitivity analysis approach, based on a hybrid geometrical–optical radiative transfer model.

Model input data were obtained from a variety of sources, including field biometry and spectroradiometry, and satellite data. The effects of

variable tree percent cover, leaf area index, stand density, burn scar age, illumination and observation geometry, and spectral region, were

taken into account. Detectability of understory burns was defined as the spectral separability of burned and unburned understory, measured

with the Jeffries–Matusita distance, for all possible combinations of the green, red, and near-infrared channels of the Moderate Resolution

Imaging Spectrometer (MODIS) sensor. Single channels, or pairwise combinations of channels perform poorly at detecting understory burns,

but a large improvement in detectability is obtained for the combination of the three spectral domains. The detectability of understory burns is

largely insensitive to the effects of stand structure and illumination/observation geometry, and depends primarily on burn scar age. Our results

agree with those of previous satellite-based studies of burns scar detectability in African savanna woodlands.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The incidence of fire in Africa exceeds that of every other

continent (Pyne, 1997). In an analysis of global fire activity

based on 21 months of daily, daytime satellite data at 1-km

resolution, Dwyer et al. (2000) determined that about half of

the fires detected were located in Africa. Barbosa et al. (1999)

estimated that the mean annual area burned in Africa during

the period 1985–1991 was in the interval 3.5� 106 to

6.3� 106 km2, while burnt biomass varied in the range
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704–2168 Tg. African fire activity is strongly concentrated

in the seasonally wet tropics (van Wilgen & Scholes, 1997),

which have a hot, wet season lasting between 4 and 8 months,

and a dry season during the rest of the year. The dominant

vegetation type in these areas of high fire frequency is

woodland, defined as land with an open stand of trees the

crowns of which form a canopy from 8 to 20 m or more in

height, and that cover at least 40% of the surface. The field

layer tends to be sparse, dominated by grasses, and usually

with little foliage between the grass stratum and the lower

canopy (White, 1983). Tropical savanna woodland fires in

Africa, South America, Southeast Asia, and Australia typi-

cally burn this understory layer and do not consume the tree

crowns. The objective of the present study is to assess the

detectability of understory burns in southern Africa savanna

woodlands, taking into consideration the spectral and struc-

tural properties of the tree stands and of the surface vegetation

layer, before and after the fire.
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The research reported was developed under the auspices

of the SAFARI 2000 international research initiative, and its

field activities took place during the Third Intensive Field

Campaign, in the dry season of 2000 (Swap et al., 2002,

2003).

1.1. Canopy reflectance modelling

The detectability of understory burns is analyzed with a

canopy reflectance modeling approach (Goel, 1988; Asner

et al., 2003). Canopy reflectance models (CRM) are math-

ematical representations of the physics of the interaction

between solar radiation, vegetation elements, and back-

ground surface, and relate plant canopy and background

characteristics to their spectral reflectance signature. Goel

(1988, 1989) considers four categories of CRM, namely

geometrical models, turbid-medium models, hybrid models,

and computer simulation models. Turbid-medium models

are particularly appropriate to model the reflectance of

dense, horizontally uniform plant canopies, such as agricul-

tural crops, and thus were not considered suitable for our

purposes. Computer simulation models track the interaction

between radiation and the vegetation canopy almost on a

photon-by-photon basis, making this kind of CRM very

realistic. However, we lacked the data to parameterize these

complex models, which are too computationally intensive

for the simulation analysis approach followed in this study.

Geometrical models describe the canopy as set of geo-

metrical objects with given shapes, dimensions, and optical

properties, laid out in a specified pattern, and overlying a

ground surface of known reflective characteristics. Canopy

reflectance is determined by the interception of light and

shadowing by the geometrical objects, and reflectance from

the sunlit and shadowed fractions of the background sur-

face. Hybrid models combine the geometric optics (GO) of

large-scale canopy structure with principles of radiative

transfer (RT) for volume scattering within individual

crowns. Hybrid GORT models are appropriate to model

discontinuous natural vegetation canopies, which exhibit

gaps and openings (Li & Strahler, 1992), and are relatively

simple to parameterize and validate (Ni et al., 1999).

1.2. Remote sensing of the understory layer

Caetano et al. (1998b) assessed the importance of non-

linear spectral mixing between a pine forest overstory and a

shrub understory layer using a hybrid GORT model. They

unmixed overall canopy reflectance into three components:

a forest canopy component, a shrub background component,

and a background-canopy mixed component. Caetano et al.

(1998a) developed an approach for characterizing the forest

understory, based on the shrub background component and

on standard forest inventory data.

Boschetti et al. (2003) used a radiative transfer model to

simulate and analyze canopy spectral signature changes for

varying overstory leaf area index (LAI) and diverse under-
story conditions, in a sparse canopy poplar plantation. Based

on this analysis, the ability of a spectral index using short

wave infrared data to minimize understory influence on

overall scene reflectance was assessed.

Other studies relied on satellite imagery to analyze forest

understory. Hall et al. (2000) produced maps of conifer

understory within deciduous-dominated mixed stands. They

used Landsat Thematic Mapper imagery, combined with

stand inventory data, and achieved an accuracy of 71% in

understory type mapping. Wilson and Ference (2001) ana-

lyzed the spectral separability of various understory compo-

nents, including four ecological indicator plant species.

Spectral mixture analysis of Compact Airborne Spectro-

graphic Imager (CASI) imagery successfully separated

understory and overstory spectral components, and showed

that canopy closure plays a major role in the detectability of

understory characteristics.

In spite of the prevalence of understory fires in tropical

savannas, disturbed tropical evergreen forests (Cochrane et

al., 1999; Nepstad et al., 1999) and their common occur-

rence in temperate and boreal forests (Brown & Davis,

1973), there appears to be a complete lack of research on

the detectability of burnt surfaces as a function of overstory

characteristics, illumination and observation geometry, and

fire scar age.

1.3. Study area

In southern Africa, fire incidence is particularly high in

the wetter Zambezian miombo woodlands of eastern

Angola, northern Zambia, southwestern Tanzania and cen-

tral Malawi (Frost, 1996). Wetter miombo is characteristic

of areas with mean annual precipitation higher than 1000

mm, but less when occurring on Kalahari sand (White,

1983). Canopy height of these woodlands often exceeds 15

m in height. Floristically, the arboreal layer of miombo

woodlands is dominated by Brachystegia sp., either alone or

in conjunction with Julbernardia sp. or Isoberlinia sp. The

miombo is distinctive because of the shape of its dominant

trees, which have mostly short and slender boles. Branches

start as sharply ascending, then spread out to support light,

shallow, flat-topped crown, with pinnate leaves (White,

1983). One of the characteristic features of miombo wood-

land is its uniformity over wide areas, which is due to

physiognomic similarities of the dominant canopy trees, and

to similarity of environmental conditions across the region

(Desanker et al., 1997).

Our study area is the wetter Zambezian miombo wood-

land, corresponding to mapping unit 25 of White (1983),

located in southern hemisphere Africa approximately be-

tween 4jS and 16jS, and between 14jE and 40jE. The types
of miombo woodland stand structure simulated in this study

are meant to be representative of the vegetation in that area.

Haanpää (1998) combined data from various authors, and

compiled a calendar of miombo phenological seasons. The

aspects most relevant for modelling the detectability of



Table 1

Fire season in miombo woodlands

Modified from Haanpää (1998).
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understory fires are summarized in Table 1. Most miombo

trees are deciduous, shedding leaves during the dry season.

Leaf fall peaks in August–September in the wetter miombo.

Dry season understory fires are a regular, frequent occur-

rence, especially during the months of August to October

(Frost, 1996).
Table 2

Angular values for the early dry season, high stand density, and old fire scar

scenario

Case Solar

zenith

(hI)

View

zenith

(hV)

Solar

azimutha

(/I)

View

azimutha

(/V)

Relative

azimuth

(/R)

5 42.69j 40j 57.11j 270j 147.11j
D 42.69j 25j 57.11j 270j 147.11j
o 42.69j 0j 57.11j Undefinedb Undefinedb

E 42.69j 25j 57.11j 90j 32.89j
n 42.69j 40j 57.11j 90j 32.89j

Case symbols correspond to those in Fig. 8.
a North corresponds to an azimuth of 0j and South to 180j. The view

azimuths of 90j and 270j correspond to off-nadir satellite positions over

the 13jS parallel, looking due East and due West, respectively.
b The azimuth of a nadir view (view zenith of 0j) is undefined.
2. Data and methods

2.1. Geometric optical and radiative transfer (GORT)

modelling

The issue of detectability of burns in the understory of

miombo woodlands was analyzed in a forward simulation

approach, using an analytical hybrid geometric optical (GO)

and radiative transfer (RT) model (Ni et al., 1999). In

forward modeling, scene reflectance is simulated using

hypothetical and/or measured leaf, canopy and stand char-

acteristics, to analyze the effects of forest structure on

spectral reflectance signatures (Asner et al., 2003). We did

not to attempt to model actual miombo woodland, but

compiled the required data from a variety of sources, and

simulated a range of plausible stand structures. The analyt-

ical hybrid GORT model of Ni et al. (1999) combines the

geometric optics of large-scale canopy structure with prin-

ciples of radiative transfer for volume scattering within

individual crowns. Pure GO models capture the essential

structure of discontinuous plant canopies, namely the

clumping of leaves into crowns, which cast shadows. The

area in the field of view of a sensor is modeled as a mix of

sunlit and shaded crowns and background (Ni et al., 1999).

The analytical approximation of radiative transfer was used

to model multiple scattering between leaves, within indi-

vidual crowns. The RT component accounts for the influ-

ence of the optical properties of the foliage on multiple

scattering (Ni et al., 1999). Model input parameters are:

– Illumination, hI, and viewing, hV, zenith angles.

– Tree and stand geometry parameters:

– vertical crown radius, rv (m)

– horizontal crown radius, rh (m)
– stand density, n (m� 2)

– height of averaged crown center, h (m)

– difference of upper bound and lower bound of crown

centers, Dh (m).

– foliage area volume density, Fa (m
2 m� 3)

– Spectral signature data:

– leaf single scattering albedo, x (dimensionless)

– background reflectance, qs (dimensionless)

The analytical hybrid GORT treats a scene as the

combination of four components: sunlit crowns, shaded

crowns, sunlit background, and shaded background. The

bi-directional reflectance of the whole scene is modeled as

the sum of the reflectance of the individual components,

weighted by their respective areal proportions (Ni et al.,

1999):

RðhI; hV;/RÞ ¼ KcC þ KgGþ KtT þ KzZ ð1Þ

where: /R = relative azimuth angle; Kc = areal proportion of

sunlit and viewed crown; C = spectral signature of sunlit and

viewed crown; Kg = areal proportion of sunlit and viewed

background; G = spectral signature of sunlit and viewed

background; Kt = areal proportion of shaded and viewed

crown; T= spectral signature of shaded and viewed crown;



Table 3

Angular values for the late dry season, low stand density, and recent fire

scar scenario

Case Solar

zenith

(hI)

View

zenith

(hV)

Solar

azimutha

(/I)

View

azimutha

(/V)

Relative

azimuth

(/R)

5 29.48j 40j 40.45j 270j 130.45j
D 29.48j 25j 40.45j 270j 130.45j
o 29.48j 0j 40.45j Undefinedb Undefinedb

E 29.48j 25j 40.45j 90j 49.55j
n 29.48j 40j 40.45j 90j 49.55j

Case symbols correspond to those in Fig. 8.
a North corresponds to an azimuth of 0j and South to 180j. The view

azimuths of 90j and 270j correspond to off-nadir satellite positions over

the 13jS parallel, looking due East and due West, respectively.
b The azimuth of a nadir view (view zenith of 0j) is undefined.
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Kz = areal proportion of shaded and viewed background;

Z = spectral signature of shaded and viewed background.

Ni et al. (1999) and Ni and Li (2000) provide further

details about the analytical HGORT model. The overall

scene spectral signatures produced as the main model output

were used to analyse the separability between burned and

unburned understory scenarios and, therefore, to determine

the detectability of understory burns.

Ni et al. (1999) and Ni and Li (2000) assessed the

accuracy of the analytical HGORT model to simulate the

reflectance of a dense black spruce (Picea mariana)

forest in central Canada, and of an open mesquite

(Prosopis glandulosa) shrubland in New Mexico, respec-

tively. Model results from the black spruce site were

compared with field measurements from the Portable

Apparatus for Rapid Acquisition of Bidirectional Obser-

vations of Land and Atmosphere (PARABOLA), Ad-

vanced Solid-state Array Spectroradiometer (ASAS), and

POLarization and Directionality of Earth’s Reflectance
Fig. 1. Miombo woodlands of sout
(POLDER) instruments. Model predictions fit the POL-

DER and PARABOLA measurements well in the princi-

pal plane and across the principal plane, in both the

visible and near infrared spectral domains, at a solar

zenith angle of 36j. Field measurements were slightly

overestimated in the backward scattering direction. At a

solar zenith angle of 47.7j, the model fits well the ASAS

and PARABOLA measurements along the principal plane,

in the visible and near infrared. The analytical HGORT

model captured well the bowl shape with a strong

hotspot in the backward scattering direction, typical of

the bi-directional reflectance of conifer forests in the

principal plane (Ni et al., 1999). Ni and Li (2000)

compared model results with Advanced Very High-Reso-

lution Radiometer (AVHRR) red and near infrared reflec-

tance measurements in the quasi-principal plane. Model

predictions slightly underestimate AVHRR measurements

in the backward scattering direction, and slightly overes-

timate them in the forward scattering direction. The root

mean square error (RMSE) is 0.0037 in the red (AVHRR

channel 1) and 0.046 in the near infrared (AVHRR

channel 2). Model predictions also agreed well with

POLDER measurements, with slight overestimation close

to the hotspot angle, and slight underestimation at smaller

reflectance values in the forward scattering direction.

2.2. Model input data

2.2.1. Illumination and observation geometry

The scene illumination angle for the HGORT simula-

tions depends on latitude of the study area and time of the

year. Two dates were considered, corresponding to the

early dry season and the late dry season. The dates

selected correspond to the first and third quartile of the

cumulative distributions of nighttime active fire counts
hern Africa, and study area.
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(Arino & Plummer, 2001) from the Along Track Scanning

Radiometer (ATSR-2) for the 2000 dry season of southern

Africa, and are, respectively, July 3 and September 5.

Latitude of 13jS was selected, corresponding to the area

where most of the field data used in this study were

gathered. The illumination geometry on July 3 and Sep-

tember 5, at 13jS and at 10:30 AM local time (the

nominal time of overpass of various Earth observation

satellites) and the observation geometry postulated for the

simulations are given in Tables 2 and 3.

2.2.2. Tree and stand biometry

Some of the tree geometry parameters were obtained

from the field measurements of Scholes et al. (2002), carried

out in Zambia at Kataba Forest Reserve, near Mongu, at

Liangati Forest Reserve, and at Maziba Bay Forest, near
Fig. 2. Scatterplots of tree % cover (TC%) vs. leaf area index (LAI). The solid blac

bound is the 99th percentile regression line. The gray shade quantifies the numb
Sioma (Fig. 1). At each of the three sites, the woodland

basal area is dominated by Brachystegia species. To calcu-

late mean tree and stand structural inputs required by the

HGORT model, only live trees with diameter at breast

height larger than 5 cm were considered, for a total of 618

trees at the three sites (Scholes et al., 2002). The following

tree geometry parameters were obtained from the data:

rv = 2 m

rh = 2.3 m

h = 5.9 m

Dh = 4 m

Stand density and tree foliage area volume density were

not measured in the field. Both parameters were estimated

through relationships with variables measured in the field,
k lines bound the range of values used in the simulation analysis. The upper

er of 1-km Continuous Fields Tree Cover Project and MODIS LAI pixels.
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and variables obtained from satellite data. Stand density, n,

was calculated from tree percent cover (TC%) data using the

following relationship (Woodcock et al., 1997):

n ¼ lnð1� TC%Þ
pr2h

ð2Þ

where TC% is tree percent cover, n is stand density (m� 2),

and rh is as defined above.

Two values were used for horizontal crown radius. The

value of 2.3 m obtained from the data of Scholes et al.

(2002) corresponds to a structure with smaller trees and

higher stand density, for any given value of tree percent

cover. A horizontal crown radius of 3.5 m was taken from

the plateau miombo data of Fuller et al. (1997), representing

woodland made up of larger trees, forming a less dense

stand. These two stand structures are designated as high

density, and low density in the simulation analysis. Tree

percent cover data were obtained from the University of

Maryland Continuous Fields Tree Cover Project (DeFries et

al., 2000). Tree foliage area volume density, Fa, was

calculated from its relationship with leaf area index (LAI)

and TC%. The relationship between LAI and Fa is (Gao et

al., 2000):

LAI ¼ Faprvn
4

3
r2h ð3Þ

Eqs. (2) and (3) can be combined to yield:

Fa ¼
3LAI

4rvðlnð1� TC%Þ�1Þ
ð4Þ

2.2.3. Tree percent cover and leaf area index data

Tree percent cover data were obtained from the

University of Maryland Continuous Fields Tree Cover
Fig. 3. Spectral reflectance (q) and transmittance (s) signatures of Brachystegia s

shown.
Project (DeFries et al., 2000), and LAI data were taken

from the MOD15A2 MODerate resolution Imaging Spec-

trometer (MODIS)/Terra LAI Product (Myneni et al.,

2001). The TC% legend ranges from 10% to 80%, in

1% increments. A legend value of 80% actually repre-

sents cover equal or greater than 80% and a value of

10% is equal or less than 10% cover. The tree cover map

was generated with a linear mixture model approach

applied to 1-km Advanced Very High-Resolution Radi-

ometer (AVHRR) data acquired during 1992–1993. The

MODIS LAI product is defined as the one-sided green

leaf area per unit ground area. The 1-km product used is

produced from 8-day composite data, with the selected

value in the compositing period corresponding to that

with the highest fraction of absorbed photosynthetically

active radiation (FPAR). LAI is calculated from atmo-

spherically corrected bi-directional reflectance factors in

the 648- and 858-nm MODIS channels (Privette et al.,

2002).

White’s (1983) vegetation map has a scale of

1:5,000,000 and resulted from the simplification of vari-

ous larger-scale national or regional vegetation maps

published prior to the early 1970s. Given the coarse scale

of White’s map and the fact that some 30 years have

elapsed since the original information was compiled, we

updated the limits of mapping unit 25 with data from the

University of Maryland 1-km global land cover map

(Hansen et al., 2000). The purpose of this operation was

to exclude areas of cropland from analysis. The resulting

region (dark gray, in Fig. 1) was used as a template to

extract the TC% and LAI data for the study area.

2.2.4. TC% /LAI relationship

Simulation of plausible miombo stand structures

requires an analysis of the quantitative relationship be-

tween TC% and LAI, the variables used to calculate the n
piciformis leaves. The spectral regions used in the simulation analysis are



Fig. 4. Spectral reflectance (q) signatures of (a) unburned background; (b) recent burn background; (c) old burn background. The spectral regions used in the

simulation analysis are shown.
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Fig. 5. Relationship between variables and parameters used in the

simulation analysis, and respective data sources.
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and Fa HGORT inputs. The relationship between TC%

and LAI was analysed with scatterplots where TC% is

plotted as the independent variable, and LAI as the

dependent variable (Fig. 2). The scatterplots contain a

random sample of 1% of the satellite data, corresponding

to 15,286 pixels. Values of TC% below 30% were

excluded from the analysis, because it seemed reasonable

to expect that such a low level of tree cover would not

affect detectability of understory burns. Values of LAI

lower than 0.5 were left out for the same reason (Fig. 2).

The upper bound of TC% is 60%, corresponding to the

upper limit of tree cover for the woodland class as

defined by DeFries et al. (2000). The triangular nature

of the relationship between TC% and LAI is expected if

TC% is interpreted as a limiting factor constraining LAI.

Quantile regression techniques have recently been pro-

posed as a statistically sound technique for determining

quantitatively the magnitude of the boundaries of polyg-

onal relationships between two variables, where one

variable can be considered the dependent variable (LAI),

and the other the independent variable (TC%) (Cade et al.,

1999; Scharf et al., 1998). The upper boundary of the

relationship was defined at the 99th regression quantile,

for both the early and late dry season scatterplots. Thus,
the simulation domain in TC%/LAI space is bound by the

TC% values of 30% and 60%, and by the 99th quantile

regression line of the relationship between the two vari-

ables. Simulated miombo stands were defined at a grid of

points with increments of 10% tree cover and of 0.5 LAI,

plus the corresponding points falling on the regression

line (Fig. 2).

2.2.5. Tree leaf and background spectral data

Spectral measurements were performed near Kaoma, in

the Western Province, Zambia. Spectral reflectance (q) and
transmittance (s) of tree leaves were measured with a

FieldSpec VNIR spectroradiometer (Analytical Spectral

Devices, Boulder, CO), coupled to a LI-COR LI1800-12

External Integrating Sphere. Measurements were made

over the range 0.4–0.9 Am, with a 1.4-nm sampling

interval. Reflectance and transmittance of 10 randomly

selected Brachystegia spiciformis leaves were measured

both on the adaxial and abaxial leaf surfaces. Five meas-

urements were made on each side of each leaf, with 10

replicates for each measurement. Thus, each spectral sig-

nature shown in Fig. 3 is the mean of 100 spectral

signatures. Single-scattering albedo, x, is the sum of q
and s values. The spectral data used in the simulation

analysis correspond to the green, red and near-infrared

(NIR) regions shown in Fig. 3, and were obtained via

convolution of the spectral signatures shown, with the

respective MODIS filter response functions.

Background reflectance, qs was measured with the

FieldSpec VNIR spectroradiometer at four separate wood-

land sites near Kaoma. At the beginning of each set of

measurements, the reflectance of a white Spectralon ref-

erence plate was measured, to estimate solar irradiance at

the surface and allow for the calculation of reflectance

factors. Two of the sites had not been burned during the

2000 dry season. At the first of these sites, dry grass and

leaf litter dominated the understory. Scattered shrubs with

senescing leaves were also present. The second unburned

site was relatively open woodland, with a predominantly

shrubby understory. Dry grass and leaf litter were also

present, but covered a smaller area than at the first site.

Shrub foliage was green, and new foliage was beginning

to emerge. The other two sites where background reflec-

tance was measured had been burned during the 2000 dry

season. The first site had burned 2 days earlier, and large

fallen logs were still smoldering. The understory vegeta-

tion was thoroughly burned and significant quantities of

ash were deposited on the ground. Tree crown scorching

displayed very variable height, but had not affected a

significant volume of the canopy. There was little leaf

litter, scorched or otherwise, at the surface. The second

site had been burned 3 to 4 weeks earlier. Leaf litter was

abundant, made up mostly of scorched leaves. Exposed

soil surface was clearly visible, but some areas were still

blackened by a charcoal deposit. At all sites, care was

taken to make surface reflectance measurements under
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canopy clearings, to avoid the interference of tree shading,

and of radiance transmitted through the tree crowns.

Reference plate measurements were taken at nearby large

clearings. Fig. 4 shows the spectral signatures of back-

ground reflectance. The spectral data used in the simula-

tion analysis correspond to the green, red and near-infrared

(NIR) regions shown in Fig. 4, and were obtained by

convolving the spectral signatures shown, with the

corresponding MODIS filter response functions.

2.2.6. Simulation design and detectability of understory

burns

The relationship between the various types of input data

and parameters is shown in Fig. 5. Different values of

input parameters were combined, resulting in a large

number of model runs. Each run was parameterized by a

pair of TC% and LAI values, date (early vs. late dry

season), stand density (low vs. high), type of understory
Fig. 6. Jeffries–Matusita distance as a function of TC% and LAI, for the following

(c) late dry season, old burn; (d) late dry season, recent burn. Black circle: low-d
(unburned, recent burn, old burn), and spectral region

(green, red, NIR). Spectral variability of the understory

was addressed by performing 60 simulation runs for each

understory type, using a different spectral signature mea-

sured in the field, for each run. The total number of

simulation runs performed for each pair of TC%/LAI

values was 1080. The number of TC%/LAI pairs is 24

for the early dry season, and 15 for the late dry season,

yielding a total of 42,120 simulation runs. In order to

contain a combinatorial explosion of cases, angular effects

were analyzed only for two extreme cases. The first

corresponds to the late dry season, under low tree density

and with a recently burned surface, a combination of

factors that is expected to result in a relatively high

detectability of the understory burn. The second case

simulates an early dry season scenario, with high tree

density and an older burn, and is expected to correspond

to lower detectability of the understory burning. The total
simulation cases: (a) early dry season, old burn; (b) early dry season, recent;

ensity stand. White circle: high-density stand.



Fig. 7. Model output spectral signatures, R (hI, hV, /R), for various points along the 99th percentile regression line of Fig. 2. (a and b) early dry season; (c and d)

late dry season. The JM distances between unburned and old burn for the green– red–NIR signatures are: (a) 1.250; (b) 1.248; (c) 1.251; (d) 1.250. The JM

distances between unburned and recent burn for the green– red–NIR signatures are at the maximum of 1.414 in all cases.
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number of simulation runs for the analysis of angular

effects was 70,200. Tables 2 and 3 show values for hI,
hV, /I, /V, and /R for the 10 illumination/observation

geometry scenarios simulated.

The detectability of burns in the understory of the

simulated miombo woodland stands was assessed by com-

paring the HGORT-generated scene spectral signatures for

the unburned understory with those of the recent burn and

old burn cases, keeping all other parameters constant. The

comparison of signatures was performed using the Jeffries–

Matusita (JM) distance, calculated with the green, red, and

NIR spectral channels. The JM distance is a saturating

transform of the Bhattacharya distance (Jensen, 1996):

JMcd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� e�Bhatcd Þ

q
ð5Þ

where c and d are two spectral classes with Gaussian

distribution, e is the base of natural logarithms, and Bhat

is the Bhattacharya distance:

BHATcd ¼
1

8
ðMc �MdÞT

ðVc þ VdÞ
2

ðMc �MdÞ

þ 1

2
ln

det VcþVd

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðVcÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðVÞd

p ð6Þ

where, Mc and Md =mean matrices of spectral classes c and

d; Vc and Vd = variance–covariance matrices of spectral

classes c and d; det = determinant.

There is a strong relationship between the Bhattacharya

distance, or the JM distance, and the classification error of

two normally distributed classes. Lee and Choi (2000)

developed an approach to estimate the error for the

Gaussian maximum likelihood classifier from the Bhatta-

charya distance. We used that approach combined with Eq.

(5) to define JM distance spectral signature separability
Table 4

Jeffries–Matusita distances between unburned background, and old burns and re

The tree cover (TC%) and leaf area index (LAI) pairs correspond to the sample poi

spectral signatures separable with a classification error lower or equal to 10%. V

classification error lower or equal to 5%. The other values represent cases consid
thresholds that correspond to specified levels of classifica-

tion error probability. A JM distance of 1.09 corresponds

to a classification error probability of 10%, while a 5%

classification error probability between two spectral signa-

tures requires a JM distance value of 1.24. We designate

pairs of spectral signatures that exceed the 1.09 JM

distance threshold as separable, or detectable, and those

that exceed the 1.24 threshold as highly separable, or

highly detectable.
3. Results

Fig. 6a–d shows JM distance between the spectral

signature of unburned understory, and the spectral signature

of recent and old burns, as a function of LAI and TC%, for

the early and late dry season, for the low and high tree

density stands, and for recent and old burns. The variation of

JM distance as a function of TC% and LAI follows the

expected pattern, decreasing as LAI and TC% increase. The

difference between high density and low density stand

structures is insignificant at low levels of LAI, and increases

slightly with LAI and TC%. The values of JM distance

obtained in the case of recently burned understory (Fig. 6b

and d) indicate high separability from the corresponding

case with an unburned understory, regardless of woodland

stand structure, and over the range of values analyzed. This

observation is valid both for the early dry season and late

dry season conditions. A significant decrease in JM dis-

tance, to values just above the 5% classification error

threshold, is observed when comparing the unburned un-

derstory with the older burn scenario (Fig. 6a and c). The

relationships between variables are identical to those ob-

served for the recent burns, but they reveal somewhat lower

detectability of older burns. Both recent burns and old burns
cent burns

nts on the 99th percentile regression lines of Fig. 2. Values in bold represent

alues in bold and underlined represent spectral signatures separable with a

ered spectrally inseparable. The cases shown in Fig. 7 are shaded.
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are slightly more detectable during the late dry season

because of the semi-deciduous nature of the wetter Zambe-

zian miombo woodlands, which have lower levels of LAI

for any given level of TC% during that time of the year.

Fig. 7 shows the overall scene spectral signatures pro-

duced with HGORT, for four cases along the 99th percentile

regression line that defines the boundary of the limiting

relationship between the two variables, i.e. at almost the

highest LAI level observed for a given TC% value. Consid-

ering the three-dimensional green–red–NIR spectral signa-

tures, the JM distance between recent burns and the
Fig. 8. J–M distance for illumination/observation scenarios: (a) early dry

season, high stand density, and old burn; (b) late dry season, low stand

density, and recent burn. The symbols correspond to the cases described in

Tables 2 and 3.
unburned scenario is maximal (JM= 1.414) for all TC%

vs. LAI pairs at all wavelengths. The spectral separability

between older burns and the unburned scenario is near the

5% classification error threshold. Table 4 displays JM

distances between the unburned background, and the old

burn and recent burn backgrounds for the sample points

shown in Fig. 7, and for four additional points also located

along the 99th percentile regression lines in Fig. 2. The table

displays JM distances based on all possible combinations of

the spectral domains analyzed. No single-channel or two-

channel combination provides an acceptable level of detect-

ability in the case of old burns. The better pairwise combi-

nation of channels is the red–NIR, but the corresponding

JM distance ranges between 0.640 and 0.649, far below the

1.09 threshold required for acceptable separability. Recent

burns are more easily discriminated form unburned cases.

The 1.09 JM distance threshold is always exceeded, and the

1.24 JM threshold is also exceeded by the NIR channel, as

well as by all pairwise combinations of channels. The red–

NIR pair, and the green–red–NIR combinations exhibit the

maximum JM value of 1.414.

Fig. 8a shows the detectability of understory burns in the

early dry season, high stand density, and old fire scar

scenario, as a function of illumination and viewing geom-

etry. At very low LAI values, there is little sensitivity to

angular variations. Angular effects increase with LAI and

TC%, and JM distance is more sensitive to LAI than to TC%

variation. Spectral separability of understory burns is higher

when the satellite is located in the backscatter direction (/V

of 270j, in Tables 2 and 3 than in the forward scatter

direction (/Vof 270j, in Tables 2 and 3). Under a /Vof 90j,
Kt and Kz are lower than under the other scenarios, thus

reducing the confusion between charcoal and shadow,

which have similar spectral signatures. Of the two back-

scatter views, highest separability is attained for the /V of

40j, which is closest to the hI of 42.69j and yields the lower
Kt and Kz. Fig. 8b (late dry season, low stand density, and

recent burn) displays similar results but with higher separa-

bility, due to the presence of a stronger charcoal signature

and reduced canopy interception of radiation. In this case

maximum separability is obtained for the backscatter view

position at a 25j /V, which is closest to the 29.48j /I.
4. Discussion and conclusions

Analysis of the spectral detectability of understory burns

in a range of miombo woodland stand structures revealed

that recently burned sites are clearly separable from un-

burned sites, using spectral data in the green, red, and NIR

domains. Discrimination of older burns is also feasible,

although with slightly lower accuracy. Simulation results

are highly insensitive to variation in stand structure param-

eters, and respond almost exclusively to differences in the

spectral characteristics of the simulated scene background.

Analysis of two illumination/observation geometry cases
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revealed that spectral separability of understory burns

increases as the geometric conditions approach the hotspot

situation.

Our results agree with the findings of Fuller et al. (1997),

who analyzed the influence of canopy strata on the remotely

sensed signal of savanna woodlands from eastern Zambia.

They found that the understory layer dominated the remote-

ly sensed signal throughout most of the seasonal cycle, due

to the high tree canopy transmittance, inhomogeneous tree

cover, and lower reflectance of the tree layer relative to the

grassy understory. Their simulations, performed with the

SAIL model (Verhoef, 1984) suggest that the tree canopy

layer makes a relatively small contribution to landscape-

scale normalized difference vegetation index (NDVI), for

tree cover values of up to 60%. The tree layer tends to be

relatively more important during the dry season, when at

least part of the understory vegetation is senescent. Franklin

et al. (1991) also reported high canopy transmittance values,

ranging from 54% to 87.5%, in savanna trees from the

Sudanian and Sahelian bioclimatic zones in Mali, West

Africa.

Eva and Lambin (1998) analyzed the spectral separabil-

ity between burnt areas and unburnt savanna, fragmented

forest, and dense humid forest in the Central African

Republic. Their comparison was based on all channels

from the Landsat Thematic Mapper (TM), the Système

Probatoire d’Observation de la Terre multispectral sensor

(SPOT-XS), and the Along Track Scanning Radiometer

(ATSR-1), and was quantified with the JM distance. To

facilitate comparison, we converted their JM distance

values reported on a 0–2 scale, to the 0–1.414 scale used

in our study. They found that new burns are always highly

separable (JM= 1.411–1.414) from the other land cover

types, using all spectral channels. Older burns are slightly

less separable from unburnt savanna, especially with SPOT-

XS data (JM= 1.36). Analysis of the temporal evolution of

the spectral contrast between burned areas and unburned

woodland savanna, using all ATSR-1 channels (1.6, 3.7, 11,

and 12 Am) revealed that JM distance ranges from 1.414

immediately after the fire to 1.25 17 days after the fire, and

about 1.1 five weeks after the fire. These spectral separa-

bility results obtained from satellite data agree closely with

those we obtained. However, it is important to notice that

our analysis relied on spectral data from the green, red, and

NIR spectral domains and is, therefore, more comparable

with the results based on SPOT-XS data than with those

from ATSR-1 data, with which it shares no spectral

domain.

When studying large areas over long periods of time, it

is often necessary to use multitemporal image composit-

ing techniques (Holben, 1986; Qi and Kerr, 1997). The

decrease in detectability of burning with time since the

fire emphasizes the need to use compositing procedures

designed to maximize the fire signal (Sousa et al., 2003;

Stroppiana et al., 2002), rather than the standard maxi-

mum NDVI criterion (Holben, 1986), which delays de-
tection of the burned area until the next compositing

period.

Our simulations were performed based on data represen-

tative of the wetter Zambezian miombo woodlands, and a

maximum TC% of 60%. Since spectral detectability of

understory burns remains very high even at the highest

levels of TC% tested, it appears reasonable to expect that

understory burns will be detectable under higher TC%, and

thus that our conclusions may apply beyond mapping unit

25 of White (1983). However, we lack the field spectror-

adiometry and stand biometry data to rigorously test this

hypothesis. The roles of atmospheric effects and spatial

pattern of burning were not analyzed in this study. These

important issues will be addressed in future research.
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