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Abstract:  
Increased exposure to extreme heat from both climate change and the urban heat island effect – 
total urban warming – threatens the sustainability of rapidly growing urban settlements 
worldwide. Extreme heat exposure is highly unequal, with the urban poor most severely 
impacted. While previous studies have quantified global exposure to extreme heat, the lack of a 
globally comparable, accurate, and fine-resolution temporal analysis of urban exposure crucially 
limits our ability to deploy adaptations. Here we estimate daily urban population exposure to 
extreme heat for 13,115 urban settlements from 1983 to 2016. We harmonize new global, fine-
resolution (0.05°) daily temperature maxima and relative humidity estimates with the first geo-
located and longitudinal global urban population database. We measure the average annual rate 
of increase in exposure (person-days yr-1) at the global, regional, national, and municipality-
level, separating the contribution to exposure trajectories from urban population growth versus 
total urban warming. Using a daily maximum wet bulb globe temperature threshold of 30°C, 
global exposure increased nearly 200% from 1983 - 2016 and total urban warming elevated the 
annual increase in exposure by 52% compared to urban population growth alone. Exposure 
trajectories increased for nearly half of urban settlements, which together in 2016 comprised over 
a fifth of the planet’s population, or 1.7 billion people. However, how total urban warming and 
population growth drove exposure trajectories is spatially heterogeneous. This study reinforces 
the importance of employing multiple extreme heat exposure metrics to identify local patterns 
and compare exposure trends across geographies. Our results suggest that previous research 
underestimates extreme heat exposure, highlighting the urgency for targeted adaptations and 
early warning systems to reduce harm from urban extreme heat exposure.  

Significance statement:  
Increased extreme heat exposure from both climate change and the urban heat island effect 
threatens rapidly growing urban settlements worldwide. Yet, because we do not know where 
urban population growth and extreme heat intersect, we have limited capacity to reduce the 
impacts of urban extreme heat exposure. Here we leverage new, fine-resolution temperature and 
population data to measure urban extreme heat exposure for 13,115 cities from 1983 - 2016. 
Globally, urban exposure increased nearly 200%, affecting 1.7 billion people. Total urban 
warming elevated exposure rates 52% above population growth alone. However, spatially 
heterogeneous exposure patterns highlight an urgent need for locally tailored adaptations and 
early warning systems to reduce harm from urban extreme heat exposure across the planet’s 
diverse urban settlements. 
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MAIN TEXT 

Introduction:  

 Increased exposure to extreme heat from both climate change (1–5) and the urban heat 

island (UHI) effect (6–9) threaten the sustainability of rapidly growing urban settlements 

worldwide. Exposure to dangerously high temperatures endangers urban health and 

development, driving reductions in labor productivity and economic output (10, 11) and 

increases in morbidity (1) and mortality (3, 4, 12). Within urban settlements, extreme heat 

exposure is highly unequal and most severely impacts the urban poor (13, 14). Despite the 

harmful and inequitable risks, we presently lack a globally comprehensive, fine-resolution 

understanding of where urban population growth intersects with increases in extreme heat (3, 6, 

15). Without this knowledge, we have limited ability to tailor adaptations to reduce extreme heat 

exposure across the planet’s diverse urban settlements (6, 15, 16).  

Reducing the impacts of extreme heat exposure to urban populations requires globally 

consistent, accurate, and high-resolution measurement of both climate and demographic 

conditions that drive exposure (2, 15, 17). Such analysis provides decision makers with 

information to develop locally-tailored interventions (7, 18, 19) and is also sufficiently broad in 

spatial coverage to transfer knowledge across urban geographies and climates (6). Information 

about exposures and interventions from diverse contexts is vital for the development of 

functional early warning systems (20) and can help guide risk assessments and inform future 
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scenario planning (21). Existing global extreme heat exposure assessments (1, 3), however, do 

not meet these criteria (Table S1) and are insufficient for decision makers. These studies are 

coarse-grained (>0.5° spatial resolution), employ disparate or single metrics that do not capture 

the complexities of heat-health outcomes (22), do not separate urban from rural exposure (19), 

and rely on climate reanalysis products that can be substantially (~1 to 3°C) cooler than in-situ 

data observations (2, 23, 24). In fact, widely-cited benchmarks (25) that estimate extreme heat 

with the version 5 of the European Centre for Medium-Range Weather Forecasts Reanalysis 

(ERA5) (26) may greatly underestimate total global exposure to extreme heat (2, 23, 24). Using a 

40.6°C daily maximum 2m air temperature threshold (Tmax), recent analysis found that ERA5 

Tmax drastically underestimated the number of extreme heat days per year compared to in-situ 

observations (23). Finally, few studies (3, 18) have assessed urban extreme heat exposure across 

data-sparse (23) rapidly urbanizing regions, such as Sub-Saharan Africa, the Middle East, and 

Southern Asia (27), that may be most impacted by increased extreme heat events due to climate 

change (2, 4, 28). 

Here we present the first globally comprehensive, fine-resolution, and longitudinal 

estimate of urban population exposure to extreme heat––referred to henceforth as exposure––for 

13,115 urban settlements from 1983 to 2016. To accomplish this, we harmonize new global, fine-

grained (0.05° spatial resolution) Tmax estimates (23) with new global urban population and 

spatial extent data (29). For each urban settlement, we calculate area-averaged daily maximum 

wet bulb globe temperature (WBGTmax) (30) and heat index maxima HImax (31) using CHIRTS-

daily Tmax (23) and down-scaled daily minimum relative humidity (RHmin) estimates (32). 

CHIRTS-daily is better suited to measure urban extreme heat exposure than other gridded 
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temperature datasets used in recent global extreme heat studies (Table S1) for two reasons. First, 

it is more accurate, especially at long distances (See Fig. 3 in (23)), than widely-used gridded 

temperature datasets to estimate urban temperature signals worldwide (Fig. S1-S2). Second, it 

better captures the spatial heterogeneity of Tmax across diverse urban contexts (Fig. S3). These 

factors are key for measuring extreme heat exposure in rapidly urbanizing, data-sparse regions.  

As discussed in (23, 24), the number of in situ temperature observations is far too low 

across rapidly-urbanizing (27) regions to resolve spatial and temporal urban extreme heat 

fluctuations, which can vary dramatically over small distances and time periods. For example, of 

the more than 3,000 urban settlements in India (29), only 111 have reliable station observations 

(Fig. S3). While climate reanalyses can help overcome these limitations, they are coarse-grained 

(Table S1), suffer from mean bias, and, to a lesser degree, temporal fidelity. ERA5 has been 

shown to substantially underestimate the increasing frequencies of heat extremes (Fig. 4 in (23)), 

while Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) 

fails to represent the substantial increase in recent monthly Tmax values (Fig. 8 in (24)). These 

datasets dramatically underestimate increases in warming. CHIRTS-daily overcomes these 

limitations by coherently stacking information from a high-resolution climatology (0.05°) 

derived surface emission temperatures (24), interpolated in situ observations, and ERA5 

reanalysis to produce a product that has been explicitly developed to monitor and assess 

temperature related hazards (23). As such, CHIRTS-daily is best suited to capture variation in 

exposure across urban settlements in rapidly urbanizing (27), data-sparse regions such as Sub-

Saharan Africa, the Middle East, and Southern Asia (Fig. S3) (24). 
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 We measure exposure in person-days yr-1 – the number of days per year that exceed a 

heat exposure threshold multiplied by the total urban population exposed (2). We then estimate 

annual rates of increase in exposure at the global (Fig. 1), regional (Table S2), national (Table 

S3), and municipality levels from 1983 - 2016 (Table S4). At each spatial scale, we separate the 

contribution to exposure trajectories from total urban warming and population growth (2). For 

clarity, total urban warming refers to the combined increase of extreme heat in urban settlements 

from both the UHI effect and anthropogenic climate change. We do not decouple these two 

forcing agents (33, 34). However, we identify which urban settlements have warmed the fastest 

by measuring the rate of increase in the number of days per year that exceed the two extreme 

heat thresholds described below (15). Our main findings use an extreme heat exposure threshold 

defined as WBGTmax >30°C, the International Standards Organization (ISO) occupational heat 

stress threshold for risk of heat-related illness among acclimated persons at low metabolic rates 

(100-115W) (30). WBGTmax is a widely used heat stress metric (36) that captures the biophysical 

response (35) of hot temperature-humidity combinations (4, 17) that reduce labor output (35), 

lead to heat related illness (35) and can cause death (23). In using a threshold WBGTmax >30°C, 

which has been associated with higher mortality rates among vulnerable populations (37), we 

aim to identify truly extremely hot temperature-humidity combinations (17) that can harm human 

health and wellbeing. We recognize, however, that strict exposure thresholds do not account for 

individual-level risks and vulnerabilities related to acclimatization, socio-economic or health 

status or local infrastructure (18, 19, 38). We also note that there are a range of definitions of 

exposure and we provide further analysis identifying 2-day or longer periods where the 
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maximum heat index (HImax) (31) exceeded 40.6°C (Fig. S4-S6) following the US National 

Weather Service’s definition for an excessive heat warning (39). 

Results and Discussion: 

 Global exposure increased 199% in 34-years, from 40 billion person-days in 1983 to 119 

billion person-days in 2016, growing by 2.1 billion person-days yr-1 (Fig. 1A). Population 

growth (Fig. 1B) and total urban warming (Fig. 1C) contributed 66% (1.5 billion person-days 

yr-1) and 34% (0.7 billion person-days yr-1) to the annual rate of increase in exposure, 

respectively. That is, total urban warming elevated the global annual rate of increase in exposure 

by 52% compared to urban population growth alone. This finding is not directly comparable to 

recent global benchmarks and projections of total population exposure to extreme heat because 

of disparate exposure definitions employed (Table S1). However, our results indicate much 

higher exposure rates compared to recent continental-scale benchmarks. Defining exposure as 

the total population multiplied by the number of days per year where HImax > 40.6°C, a recent 

study found that the total annual average exposure from 1986 - 2005 for 173 African cities was 

4.2 billion person-days yr-1 (40). When we apply the same exposure criteria to our data, 

including parameterizing HImax with daily average RH instead of RHmin, we find six times the 

average total exposure for Africa, or 27.5 billion person-days yr-1, over the same time period. 

This contrasting exposure estimate showcases how the increased spatial and temporal accuracy 

of CHIRTS-daily Tmax (Fig. S1-S3), combined with the increased granularity of urban settlement 

data we employ (29), can better capture exposure trends in data-sparse regions like Africa.  

While just 25 urban settlements contributed nearly 25% of the global annual rate of 

increase in exposure (Table S3), we identify statistically significant (p < 0.05) positive exposure 
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trajectories from 1983 - 2016 for nearly half (5,985) of municipalities worldwide (Fig 2A). 

Together, these urban settlements comprised 23% of the planet’s total population (27), or 1.7 

billion people, in 2016 (27). The majority are concentrated in low-latitudes but span a range of 

climates. Additionally, 17% (2,252) of urban settlements added at least one day per year where 

WBGTmax exceeded 30°C (Fig. 2B). In other words, these urban settlements experienced an 

additional month of extreme heat in 2016 compared to 1983. Remarkably, 21 urban settlements 

with populations greater than 1 million residents in 2016 added more than 1.5 days per year of 

extreme heat. This includes Kolkata, India, which is the capital of the state of West Bengal and 

housed 22 million people in 2016 (29). These findings suggest that increased extreme heat is 

potentially elevating mortality rates for many of the planet’s urban settlements, especially among 

those most socially and economically marginalized (37). Globally, for every additional day Tmax 

exceeds 35°C compared to 20°C, mortality increases by 0.45 per 100,000 people, with an 

increase of 4.7 extra deaths per 100,000 people for those above 64 years old (12). 

 Separating the contribution to exposure trajectories from urban population growth and 

total urban warming underscores how the level of analysis affects our understanding of the 

spatial distribution and magnitude of exposure. The level of analysis employed can either mask 

or highlight spatial and temporal patterns that are key to allocating limited resources for 

adaptations and sharing knowledge across urban contexts (2, 3, 6, 7). Broadly, we find that 

municipality-level exposure trajectories (Fig. 2C) reflect national and regional-level urbanization 

trends (27). In regions with slower urban population growth (27), like Latin America and the 

Caribbean (Fig. 3A) (27), the contribution of total urban warming to increases in exposure 

trajectories compared to urban population growth is largely responsible for increased exposure 
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for the majority of municipalities compared to regions with more rapid urban population growth. 

As urban population growth rates increase by region, the signal from total urban warming 

diminishes for most municipalities, as evident by Western Asia (Fig. 3B), Southern Asia (Fig. 

3C), and sub-Saharan Africa (Fig 3D).  

However, we detail striking spatial heterogeneity in how urban demographic and total 

urban warming signals drive exposure trajectories for individual municipalities, even those with 

similar population sizes and within the same country. As such, regional and national-level 

assessments designed to inform policy implementation (1, 41), may fail to capture municipality-

level (and finer scale) nuances that are key for adaptations (7, 15) and future climate change 

scenario planning (21) (Supplementary Text, Fig. S7-S8). For example, in West Africa, while we 

find exposure trajectories increased for 88% of Nigerian urban settlements, the disparate 

influence of total urban warming across urban settlements may be dictated by local climate 

(Supplementary Text, Fig. S8). Furthermore, we map pockets of urban settlements in Southern 

India, the Ganges Delta, the Nile river valley and delta, and along the Tigris-Euphrates (Fig. 2C, 

Fig. S9)––all rapidly urbanizing regions (1)––where total urban warming exceeded urban 

population growth as the driver of exposure. This geographic pattern parallels recent global 

analysis of station observations of extreme humid heat that suggest areas of the planet may soon 

exceed human biophysical capacity, regardless of local acclimatization (17).  

Among the clearest examples of the importance of differentiating urban demographic and 

total urban warming signals at the municipality-level comes from two Indian megacities: Delhi 

and Kolkata. Exposure trajectories for both cities are congruent (Table 3, Fig. S10A). But 

population growth contributed to nearly 75% of the increase in Delhi’s exposure trajectory, 
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whereas population growth accounted for only 48% of the annual rate of increase in exposure in 

Kolkata (Table S4, Fig. S10B-C). The stark contrast in the impact of total urban warming versus 

urban population growth on the two cities’ exposure trajectories (Fig. S10) reinforces that 

individual adaptations require fine-grained spatiotemporal, yet globally comparable, analysis (6, 

15). Such precision is crucial for decision makers given the range of adaptation choices and costs 

(7, 15), and also opens new avenues of inquiry to examine linkages between elevated 

temperatures, changes in humidity, and drivers of urban population growth (16, 42–45).   

Finally, while our main findings focus on exposure determined by WBGTmax>30°C, we 

showcase the contrast between WBGTmax and HImax exposure estimates with two examples of 

poorly documented local urban extreme heat events. First, air temperatures that reached 49.8°C 

reportedly killed thousands of people in India in 1998 (46). But the reports do not specify nor 

identify impacts specific to urban settlements. In Kolkata, which was home to 12 million people 

in 1998 (27), we find that HImax exceeded 40.6°C for 53 consecutive days in May - June 1998 

(Fig. 4A). During this period the average HImax exceeded the 34-year daily HImax average by as 

much as 9°C. (27). The amplitude of daily extreme temperature-humidity combinations however, 

is not resolved using WBGTmax (Fig. 4B) because WBGTmax saturates at high values (47).  

Next, we examine the summer of 2010 in Syria, which was the final year of a 4-year 

drought that was 2 to 3 times more likely because of climate change (48). In Aleppo, home to 3 

million people in 2010 (27), we document an 8-day period shortly followed by a 7-day period 

with HImax above 40.6°C (Fig. 4C). We isolate the peak of the heat wave hitting Aleppo on Aug. 

5, during which HImax exceeded 47°C (9°C above average HImax for Aug. 5) and marked the 

second hottest day in the entire 34-year record. Yet, like Kolkata in 1998, the amplitude of the 
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extreme heat events in Aleppo in 2010 is not captured by WBGTmax compared to HImax (Fig. 4D). 

While the likelihood of heat waves has increased for the Eastern Mediterranean since the 1960s 

(49), to our knowledge, urban extreme heat during the summer of 2010 in Syria has not been 

documented nor quantified until now. This extreme heat event occurred six months prior to the 

beginning of the Syrian uprising. While conflict and climate linkages are inconclusive and 

complex (50, 51), this finding from Aleppo illustrates potential advantages of higher-resolution 

data and analysis we present here for future research to examine climate-conflict linkages. 

We present these examples not to advocate for or against the use of either WBGTmax or 

HImax to measure exposure. Both have limitations when independently used to quantify extreme 

heat exposure. HImax was not intended to estimate heat exposure above HImax~50°C (52) and the 

quadradic relationship we used to convert HImax to WBGTmax explains the asymptotic ceiling of 

WBGTmax and its failure to capture daily extremes like HImax does (47). Rather we join the 

growing community of scholars advocating for the use of multiple (22), place-based heat wave 

metrics that inform and create better synergies across research domains (19). Locally-defined 

exposure criteria (18) are especially useful for early warning systems (53) when tied to 

biophysical response of extreme heat with impacts on individual-level human health and 

wellbeing (19, 22), as well as be comparable across geographies (6).  

By focusing on extremely hot-humid exposure defined by (6) >30°C, our global synthesis 

of urban extreme heat exposure is conservative. For example, when we adjust the threshold to (6) 

WBGTmax>28°C (Fig. S11), the ISO occupational standard risk for heat-related illness for 

acclimated people at moderate metabolic rates (235-360W) (30), 7,628 urban settlements have a 

significant (p < 0.05) in exposure from 1983 - 2016 (Fig. S11). In contrast, when we adjust the 
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threshold to WBGTmax >32°C, the ISO heat-risk threshold for unacclimated people at resting 

metabolic rates (100-125W) (30), 2,979 urban settlements have a significant (p < 0.05) increase 

in exposure from 1983 – 2016 (Fig. S11). Accordingly, our findings suggest that in already hot 

regions, like the Sun Belt Region in the United States, where air temperatures are projected to 

increase (18), temperature-humidity (6) combinations may not regularly exceed extremes like 

WBGTmax >32°C for many urban settlements. For example, take Phoenix, Arizona. The hottest 

Tmax ever recorded in Phoenix was 122°F on June 26, 1990 at 23h GMT (54, 55). The relative 

humidity at that time was 11% (54). Following our methods, the HImax equivalent was 49°C and 

the equivalent WBGTmax was 32.29°C. Thus, vulnerable population regularly experience extreme 

heat exposure in Phoenix (56, 57), demonstrating the need for diverse definitions of heat stress. 

In sum, our analysis calls into question the future sustainability and equity for 

populations living in and moving to many of the planet’s urban settlements. Climate change is 

increasing the frequency, duration, and intensity of extreme heat across the globe (1–5). Indeed, 

combined temperature and humidity extremes already exceed human biophysical tolerance in 

some locations (17). Poverty reduction in urban settlements ultimately hinges on increasing labor 

productivity (10) but, across spatial scales, elevated temperatures have been associated with 

decreased economic output (11, 58, 59). As such, the spatial pattern of exposure trajectories we 

identify in Africa and Southern Asia, which already house hundreds of millions of the urban poor 

(60), highlight that, without sufficient investment, humanitarian intervention, and government 

support, extreme heat may crucially limit the urban poor’s ability to realize the economic gains 

associated with urbanization (61). Synthesizing extreme heat exposure across all individual 

urban settlements globally, however, reveals that exposure trajectories are composed of 
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thousands of extreme heat events. Each of those events presents an opportunity for effective 

early warning, a tool that, if widely implemented, can reduce the burden extreme heat places on 

all urban populations (20).    

Materials and Methods: 

Daily Temperature  

The new Climate Hazards Center InfraRed Temperature with Stations Daily (CHIRTS-

daily) provides globally extensive, high-resolution (0.05°) daily maximum and minimum 

temperature estimates (Tmax and Tmin) from 1983 – 2016 (23). CHIRTS-daily Tmax and Tmin are 

produced by bias correcting ERA5 Tmax data with the monthly averaged Tmax from the Climate 

Hazards center InfraRed Temperature with Stations (CHIRTSmax) climate data record (24). By 

combining cloud-screened harmonized geostationary satellite thermal infrared (TIR) 

observations with approximately 15,000 in-situ station observations from Berkeley Earth (62), 

CHIRTSmax is the most accurate (R2 = 0.8 – 0.9) high-resolution monthly maximum temperature 

datasets with global coverage (24). The advantage of CHIRTSmax is that it captures Tmax in 

rapidly urbanizing (27), yet data sparse regions (Fig. S1-S2). Indeed, from 1983 to 2016, station-

based daily observations of temperature maxima declined globally from 5,900 to 1,000 (24). This 

decline was especially acute in Sub-Saharan Africa, the Middle East and Southern Asia, regions 

that have the fastest growing urban populations (27). Validation of CHIRTS-daily Tmax against 

Global Historical Climatology Network and Global Summary of the Day databases show that 

CHIRTS-daily consistently outperforms the widely used Princeton University’s Global 

Meteorological Forcing Dataset (PGF) for land surface modeling (Figs. S1-3) (63) as well ERA5 

(26).  
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The methodology used to produce the CHIRTS-daily Tmax relies on fusing the skill of 

CHIRTSmax at measuring high-spatial resolution monthly climatology (24) with the ability of 

ERA5 Tmax to measure daily temperature anomalies. To produce CHIRTS-daily Tmax, first, ERA5 

Tmax and Tmin are down-scaled from 0.25° latitude by 0.25° longitude to 0.05° by 0.05° using 

bilinear interpolation to match the spatial resolution of CHIRTSmax. Next, the ERA5 daily diurnal 

temperature range (DTR) is calculated by subtracting ERA5 daily Tmax from ERA5 daily Tmin 

(DTR) (eq. 1). ERA5 daily Tmax are then converted to anomalies, by subtracting the ERA5 

monthly Tmax average from the daily ERA5 Tmax value (eq. 2). The ERA5 Tmax daily anomalies 

are then added to the CHIRTSmax value for a given month (eq. 3). CHIRTS-daily Tmin is produced 

by subtracting the ERA5 daily diurnal temperature (DTR) from CHIRTS-daily Tmax (eq. 4).  This 

process is repeated across all months and all days from 1983 - 2016 and can be expressed as  

 for t = 1 … T (eq. 1) 

 for t = 1 … T, m = 1 … M (eq. 

2) 

(eq. 3) 

 (eq. 4) 

where T is all the days (t) in the CHIRTS-daily record and M is all the months (m) in the 

CHIRTSmax record from 1983 – 2016.  

Daily Relative Humidity Product 

DTRt =  ER A5 Tmaxt
−  ER A5 Tmint

ER A5 T m, anomn
maxt =  ER A5 Tt

maxt
− ER A5 T m

max_

CHIRTSdaily Tmax =  CHIRTSmax +  ER A5 T m, anomn
maxt

CHIRTSdaily Tmin = CHIRTSdaily Tmax − DTRt 
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Because Tmax generally occurs when RH is lowest during a diurnal cycle (32), daily 

relative humidity minimum fields (RHmin) are calculated (Eq. 5-7) by combining CHIRTS-daily 

Tmax with downscaled ERA5 dew-point pressure (Td) and surface pressure (p, kg / kg) from 

Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). 

ERA5 Td is downscaled from 0.25° longitude by 0.25° latitude and MERRA-2 p is downscaled 

from 0.5° latitude x 0.625° longitude to CHIRTS-daily’s 0.05° by 0.05° spatial resolution using 

bilinear interpolation. To calculate RHmin (64), first we calculated specific humidity (q) as:  

 (Eq. 5) 

where vapor pressure in millibars (e), is: 

 (Eq. 6) 

Daily RHmin is then calculated, as:  

 (eq. 7) 

where T is the CHIRTS-daily Tmax and T0 is 273.15 to convert Kelvin to Celsius. The result is a 

fine-grain daily RH estimate for the entire planet from 1983 - 2016.  

Population Data 

We use population estimates and spatial boundaries for 13,115 urban settlements from the 

Global Human Settlement Layer Urban Centers Database (GHS-UCDB) released by the 

European Commission Joint Research Council in 2019 (29). Available as vector shapefiles, 

GHS-UCDB is derived from a gridded population modeling framework that apportions finest-

available census data to grid cells based on built environment detected in the Landsat archive 

(for a complete description see ((29)). GHS-UCDB populations are benchmarked for 1975, 1990, 

q = (0.622  ×  e) ÷ (p − (0.378  ×  e))

e = 6.112  ×  exp((17.67  ×  Td) ÷ (Td + 243.5)

RHmin = 0.263  ×  p  ×  q  ÷ (exp((17.67(T − T0) ÷ T − 29.65))
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2000 and 2015. To estimate populations for each GHS-UCDB polygon for each year from 1983 - 

2016, we apply a stepwise linear interpolation to the 1975, 1990, 2000, and 2015 GHS-UCDB 

population estimates for each urban settlement. 

GHS-UCDB is the only well-documented global, geo-located urban population and 

extent dataset. We recognize that strict definitions of urban populations often fail to capture the 

urban-rural continuum (65), nor the wide diversity and variation within and between urban 

settlements across the planet (66). But by using a uniform criterion to identify populations and 

boundaries of urban settlements across the planet, the GHS-UCDB allows for direct comparison 

of urban settlements populations across disparate geographies and maps the diverse urban 

settlement patterns to strict fine-grained geographic boundaries requisite to calculating urban 

population exposure to extreme heat globally. 

Data Harmonization 

We convert the GHS-UCDB polygons to a raster in the same coordinate reference system 

(WGS 84) and spatial resolution as CHIRTS-daily Tmax (0.05° by 0.05°). We then calculate HImax 

and WBGTmax with CHIRTS-daily Tmax and RHmin for 0.05° pixels within each urban settlement 

from 1983 – 2016 as described below. For each urban settlement, we then area-average HImax and 

WBGTmax for each day in the data record. We recognize the limitations of using an area-average 

to characterize WBGTmax and HImax for an entire urban settlement, especially for large 

agglomerations that can span multiple climatic zones (6). However, robust global and 

continental-scale urban heat studies report a single temperature for urban settlements (3, 4, 6). 

We also note that CHIRTS-daily is available at a finer spatial resolution (Table S1) and has better 
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spatial and temporal fidelity, than the temperature datasets used in recent global retrospective and 

predictive extreme temperature studies (3, 4) and UHI effect studies (6). 

Daily Urban Heat Index Maximum Estimates 

We calculate daily maximum heat index values (HImax) for 0.05° pixels within each urban 

settlement following the National Ocean and Atmospheric Administration's (NOAA) guidelines 

(31). First, CHIRTS-daily Tmax (referred to as  in eq. 8 - 11 for simplicity) and RHmin values 

are transformed from Celsius to Fahrenheit. Next, daily HImax values are calculated using 

Steadman’s equation and averaged with the value (eq. 8): 

 

(eq. 8) 

If the resulting averaged value is greater than 80 F, then we calculate HImax for each city 

following the complete Rothfusz equation (eq. 9): 

  

(eq. 9) 

We then adjust the Rothfusz heat index values per NOAA’s guidelines. For a given urban 

settlement on a given day, if  is between 80 and 112 °F and RHmin <13%, we subtract 

adjustment 1 from HImax (eq. 10). If   is between 80 and 87 °F and RHmin  > 85%, we add 

adjustment 2 to HImax (eq. 11). We then convert all resulting maximum daily heat index values 

back to Celsius. 

Tmax

Tmax

HI max =
(0.5  ×  (T max +  61.0  +  ((T max − 68.0)  × 1.2)  +  (0.094RHmin))  +  T max  

2
 

HI max  =   − 42.379  +  2.04901523T max  +  10.14333127RHmin  −  0.22475541T max RHmin − . 00683783T max
2  −  0.05481717RHmin

2 +  0  . 00122874T max
2RHmin  +  0.00085282T maxRH2  −  0.00000199T max

2RHmin
2

Tmax

Tmax
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  (eq. 10) 

 (eq. 11) 

Daily Urban Wet Bulb Globe Temperature Maximum Estimates 

Pairwise HImax and WBGTmax values fit a quadratic relationship, with HImax estimates 

above 40.6°C within ±0.5 °C of WBGTmax (47), a more complex measure of extreme heat that 

incorporates radiant heat and air speeds and is widely used to measure occupational limits to heat 

stress (47). As such, we convert HImax pixels estimates to WBGTmax using eq. 12: 

 (eq. 12) 

Urban Population Exposure to Extreme Heat 

We identify urban extreme heat events for two criteria: one day or longer periods where 

WBGTmax>30°C and two day or longer periods the maximum HImax >40.6°C. The WBGTmax 

threshold we employ follows the International Standards Organization (ISO) occupational heat 

stress criteria for risk of heat-related illness among acclimated people with low metabolic rates 

(125 - 180W) (30, 35). The HImax threshold follows the US National Weather Service’s definition 

for an excessive heat warning (39). We acknowledge that the diversity of heat wave and extreme 

heat event definitions reflects the wide range of disciplines studying extreme heat (22). Climate 

scientists tend to use strict thresholds for comparable statistics across the planet, physiologists 

and occupational health researchers tend to use thresholds tied to local adaptations connected to 

universal biophysical responses to heat stress (35). Rather than use percentile based criteria to 

identify heat stress that fit local contexts (18), we employ WBGTmax and HImax thresholds for two 

ADJ1 =  
0.25  ×  (13  −  RHmin)  ×   (17 − ABS(Tmax  − 95)

17
 

ADJ2  =
RHmin − 85

10
×

87 −  Tmax

5
 

WBGT (°C ) =   − 0.0034 HI2 (°F ) + 0.96 HI (°F ) − 34 
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primary reasons: (1) to provide consistent estimates of urban heat extreme heat exposure 

trajectories that can be directly compared across urban geographic and spatial scales, and (2) to 

capture the contribution to exposure trajectories from both urban population growth and total 

urban warming using thresholds that have been shown to impact human health and well-being.  

Furthermore, unlike extreme heat studies that solely employ 2m air temperature (1), both 

WBGTmax and HImax account for the nonlinear biophysical response to the relationship between 

humidity and air temperature (3). Core body temperatures are almost universally maintained 

around 37°C and skin temperatures around 35°C (67). Hyperthermia, elevated core body 

temperature, occurs when elevated skin temperatures are sustained, which can result in death 

when core body temperatures reach around 42-43°C (68). While acclimatization can reduce the 

burden of heat (67, 69), acclimatization only improves sweating mechanisms, and the cooling 

effects of acclimated people have limits. As relative humidity increases, the evaporative cooling 

effects of sweating decreases and once relative humidity reaches 100%, sweating continues but 

evaporative cooling stops. Even acclimated or healthy humans face mortality with prolonged 

skin temperatures of 37–38°C (70, 71). Thus, it is reasonable that sustained periods of time with 

HI > 35°C (72) can be physically intolerable and outdoor exposure to WBGTmax >30°C has been 

associated with increased mortality rates among vulnerable populations (37). Accordingly, our 

exposure thresholds are a conservative estimator, yet comparable globally across spatial scales, 

of urban population exposure to extreme heat to capture the harmful social (73), health (1), 

economic (11, 12), and potential political consequences (74) of exposure to extreme heat.  

Urban Population Exposure Trends 
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We quantify urban exposure to extreme heat in person-days yr-1 for each GHS-UCDB 

urban settlement from 1983 - 2016. Person-days yr-1 is a widely used metric to compare and 

contrast exposure to extreme heat across geographies and time periods (4, 40, 75). For a given 

year (Yi) and for a given urban settlement (j), we multiply the urban settlement’s population (Nij) 

by the number of days for year i a threshold is exceeded (e.g. WBGTmax >30°C,  Daysij, eq. 13).  

 After summing exposure in person-days yr-1 for each year at municipality, national, 

regional, and global scales, we evaluate annual rate of increase in exposure from 1983 – 2016 

(person-days yr-1) across spatial scales by fitting simple ordinary least squares linear regression 

models (OLS). For example, at the municipality-level, we estimate the rate of change ( ) 

from 1983 - 2016 in person-days yr-1 as exposure (Expij) for year i from 1983 - 2016 with eq. 14. 

 (eq. 13) 

 (eq. 14) 

Next, we fit simple OLS regression models to estimate the rate of change in the number of days 

per year where a threshold is exceeded for each urban settlement (eq. 15). For both the rates of 

increase in exposure and days per year a threshold is exceeded we subset the data to include only 

urban settlements with statistically significant positive trends (p < 0.05).  

 (eq. 15) 

Contribution to Exposure from Population Growth versus Total Urban Warming 

We quantify the share of exposure from population growth versus total urban warming 

for each urban settlement. For a given year i and urban settlement j, the share of person-days yr-1 

βexp

Expij =  Nij × Daysij

Expij =  β0  +  βexp Yi  +  ε

Warmingij =  β0  +  βj−days Yi  +  ε
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from total urban warming (Heatij) is calculated by multiplying the urban settlement’s population 

fixed at 1983 by the number of days per year a threshold is exceeded (eq. 16). 

 (eq. 16) 

The share of exposure from population is calculated by multiplying Daysij by the increase in 

population since 1983 (eq. 17). 

 (eq. 17) 

To measure the rate of change in and , we apply simple OLS regressions to 

estimate the average rate of increase in person-days yr-1. The resulting coefficients,  and 

, are the average rate of change in person-days yr-1 from total urban warming and 

population growth, respectively. We use these coefficients to generate a bounded index to 

measure the relative share in the increase of exposure from urban population growth versus total 

urban warming from 1983 - 2016. To this end, for a given urban settlement j, we subtract the rate 

of person-day increase from population-growth ( ) from the rate of person-day increase due 

to warming ( ) and divide the result by the annual increase in coefficient of exposure ( , 

eq. 18). We then normalize the index and plot the distribution of this index for at for all 

municipalities (Fig. 2C, Fig. S5C) and by  region (Fig. 3, Fig. S6). 

(eq. 18) 

Identifying Heat Waves 

Our dataset includes more than 150 million area-averaged daily Tmax, RHmin, WBGTmax, 

and HImax observations spanning more than 13,000 urban settlements from 1983 to 2016. As 

Heatij =  N83j × Daysij

Popij =  (Nij  − N
83j

)  ×  Daysij

Heatij Popij

βpop

βheat

βpop

βheat βexp

Index =  (βpop  −  βheat )  ÷  βexp
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such, we produced a comprehensive inventory of urban extreme heat events across the two 

thresholds employed, for all urban settlements as a derivative product that identifies the duration, 

intensity, magnitude and dates of all urban extreme heat events worldwide from 1983 - 2016. The 

entire dataset is searchable by English-language municipality names, country, and region 

(including sub- and intermediate-regions) and made publicly available for scholars and 

practitioners to identify extreme heat events based on the criteria of their choosing (22). 

Uncertainty and Limitations 

We recognize that, aside from our linear regression models, the results are presented as 

point estimates without uncertainty. Yet all of the underlying data are from complex fusions of 

various different data sources. The underlying data products being used lack characterization of 

uncertainty and thus prevent us from estimating uncertainty in our results. Because of this, our 

analysis focuses on distinct and extreme differences in the patterns we identify that are 

representative estimates of the true signals of the underlying processes. Given the fine-grained 

spatiotemporal resolution of our analysis, our results provide crucial improvements of previous 

coarse-scale data on total urban warming (4, 40) and urban population growth trends (27) that are 

key for future climate change scenario planning (21), adaptation development (6) and early 

warning system development (20). 

Data and materials availability 

All data and code produced are publicly available on Github: https://github.com/

ecohydro/GlobalUrbanHeat. CHIRTS-daily Tmax and the relative humidity product are available 

from UCSB Climate Hazard Center FTP site: ftp://ftp.chc.ucsb.edu/pub/org/chc/products/

CHIRTSdaily/v1.0/global_tifs_p05/ 
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Global Human Settlement Layer Urban Centers Database (GHS-UCDB) is available from the 

European Commission JRC: https://ghsl.jrc.ec.europa.eu/datasets.php 
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Figure Legends 

Fig. 1. Global urban population exposure to extreme heat, defined by one day or long periods 

where WBGTmax >30°C, from 1983 – 2016 (A), with the contribution from population growth 

(B) and total urban warming (C) decoupled.  

Fig. 2. (A) Municipality-level increase in the rate of urban population exposure to extreme heat 

from 1983 - 2016 and (B) the rate of increase in the total number of days per year where 

WBGTmax > 32°C. (C) The share of population versus total urban warming in the rate of increase 

of total population exposure using WBGTmax > 30°C. Fig. S4 zooms in on Southern India, 

Ganges Delta, Nile river valley and delta, and Tigres-Euphrates river valley. Note, the largest 
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increase in exposure (A) and days per year WBGT >30°C (B) are rendered last for emphasis. In 

(C), urban settlements with a greater contribution from total urban warming (e.g. pink) are 

rendered last for emphasis.  

Fig. 3. The comparative contribution to the increase in the rate of urban exposure to extreme heat 

due to population growth versus total urban warming varies considerably across selected regions 

using WBGTmax > 30 °C threshold. 

Fig. 4 Two examples – Kolkata, India in 1998 (A and B) and Aleppo, Syria in 2010 (C and D) – 

previously poorly or undocumented documented urban heat waves that our analysis uncovered. 

In both cases, the contrast between daily HI max (A and C) with WBGTmax (B and D) estimates 

shows that, while HI was not designed to be accurate at values HImax > 50°C, WBGTmax does not 

capture the amplitude of daily extremely hot temperature-humidity combinations. 

Figure 1 
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Supplementary Text 
Fig. S7 provides examples of exposure trends at the country-level for Nigeria, China and 
Italy, separating the contribution from total urban warming and urban population growth 
as shown globally in Figure 1 of the main text. These three examples highlight how 
geographic variation—including levels of development, country population sizes, and 
urban settlements located across a range of climate zones within each country (1)––affect 
national-level exposure trajectories. Both China and Nigeria are both rapidly urbanizing 
(2). As such, urban population growth explains much of the national-level exposure 
trajectories. Unlike in China, where the national-level contribution from total urban 
warming is less pronounced (Fig. S7), we find that in Nigeria the exposure trajectory is 
also clearly being affected by total urban warming (Fig. S7). In Italy, populations across 
all urban settlements are stable or declining (2). Thus, any increase in total urban 
warming will drive the overall increase in exposure (Fig. S7).  

As we zoom into municipality-level exposure, our analysis reveals heterogeneous spatial 
patterns of how urban population growth and total urban warming drive exposure 
trajectories within a given country, especially those that span climate gradients (Fig. S8). 
Take three examples of large Nigerian cities (Fig S8): Lagos, Abuja, and Kano. These 
three cities cover diverse climate zones across Nigeria’s north-south gradient. While all 
three have experienced rapid population growth since 1983, the trend for exposure and 
total urban warming varies across the three cities. For Lagos, which is coastal, the effect 
of the annual increase in the number of days per year where WBGTmax >30°C on the 
city’s exposure trajectory is apparent. Similarly, Kano, which is in the north and borders 
the Sahara Desert, has experienced a more rapid increase in the number of days per year 
where WBGTmax >30°C. In contrast, Abuja, which is centrally located and experienced 
rapid population growth like Lagos and Kano, rarely experienced any days from 1983 - 
2016 where WBGTmax>30°C and thus it has no significant exposure trend. 

The contrast in exposure trajectories between countries and across urban settlements 
within a country highlights the importance of fine-resolution, yet globally comprehensive 
urban extreme heat exposure analysis presented here. Indeed, our results and data capture 
the diverse spatial patterns requisite to pinpoint and compare exposure trajectories to aid 
the development of adaptation strategies (1) and early warning systems (3). This is 
especially important given finite resources and the various tradeoffs of adaptation to 
reduce the impacts of urban extreme heat exposure (4, 5). 
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Fig. S1 Distribution of correlation statistics (R2) for urban CHIRTS-daily Tmax and 

Princeton University’s Global Meteorological Forcing Dataset (PGF) Tmax with urban 
Global Historical Climatology Network and Global Summary of the Day databases. 
CHIRTS-daily Tmax outperforms PGF globally and in crucial rapidly urbanizing regions, 
such as Africa, Southern Asia, Western Asia, that lack station observations for the 
majority of urban settlements (Fig. S3). Figure was reconstructed with data from (4). 
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Fig. S2. Correlation (R2) for CHIRTS-daily Tmax and Princeton University’s Global 
Meteorological Forcing Dataset (PGF) Tmax with urban Global Historical Climatology 
Network and Global Summary of the Day databases for Southern Asia. Much of the 
region’s urban areas lack station observations. For example, in India, of 3,248 urban 
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settlements, only 111 have GHCN/GSOD stations with a robust reporting record (4). At 
0.05° spatial resolution, CHIRTS-daily provides accurate, high resolution urban Tmax 
estimates for rapidly urbanizing regions like Southern Asia that lack widespread urban 
station observations and improves over previous datasets like PGF. 

 
Fig. S3 Correlation (R2) for CHIRTS-daily Tmax and Princeton University’s Global 
Meteorological Forcing Dataset (PGF) Tmax with urban Global Historical Climatology 
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Network and Global Summary of the Day databases for the Houston, Bangkok, Dubai, 
and Abu Dhabi metropolitan areas. All four urban settlements had a significant exposure 
trend from 1983 - 2016 using a threshold of WBGTmax > 30°C. Across these diverse 
urban contexts, CHIRTS-daily better captures the urban Tmax signal than PGF and 
provides accurate Tmax estimates.    

 

Fig. S4. Global urban population exposure to extreme heat from 1983 – 2016 (A), with 
the contribution from population growth (B) and total urban warming (C) decoupled. 
Extreme heat exposure is defined by urban population exposed to two days or longer 
periods where HImax > 40.6°C. 
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Fig. S5. (A) Municipality-level increase in the rate of urban population exposure to 
extreme heat from 1983 - 2016 and (B) the rate of increase in the total number of days 
per year where HImax > 40.6°C (C). Note, the largest increase in exposure (A) and days 
per year HImax > 40.6 °C (B) are rendered last for emphasis. In (C), urban settlements 
with a greater contribution from total urban warming (e.g. pink) are rendered last for 
emphasis. Extreme heat exposure is defined by urban population exposed to two days or 
longer periods where HImax > 40.6°C. 
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Fig. S6. The comparative contribution to the increase in the rate of urban exposure to 
extreme heat due to population growth versus total urban warming varies considerably 
across selected regions when extreme heat exposure is defined by urban population 
exposed to two days or longer periods where HImax > 40.6°C. 
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Fig. S7. National-level total urban warming exposure trajectories from 1983 – 2016 with 
the contribution from total urban warming and urban population growth separated for 
Nigeria, China and Italy. WBGTmax>30°C threshold is used to define extreme heat 
exposure. 
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Fig. S8.  Municipality-level total urban warming exposure trajectories from 1983 – 2016 
with the contribution from total urban warming and urban population growth separated 
for three large Nigerian cities—Lagos, Abuja, and Kano. WBGTmax>30°C threshold is 
used to define extreme heat exposure. 
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Fig. S9. Zoomed in from Fig. 2C. The share of population versus total urban warming in 
the rate of increase of total population exposure in Southern India, Ganges Delta, Nile 
river valley and delta, and Tigris-Euphrates river valley using WBGTmax > 30°C. Total 
urban warming drove exposure trajectories in urban settlements in coastal southwestern 
India and southern Indonesia, though rapidly urbanizing regions. Note, urban settlements 
with a greater contribution from total urban warming (e.g. pink) are rendered last for 
emphasis. WBGTmax>30°C threshold is used to define extreme heat exposure.  
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Fig. S10. (A) Total urban population exposure to extreme heat from 1983 – 2016 for 
Delhi and Kolkata, with the contribution from (B) population growth and (C) total urban 
warming decoupled. WBGTmax>30°C threshold is used to define extreme heat exposure.  
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Fig. S11 Urban settlements with a significant (p < 0.05) increase in exposure from 1983 - 
2016 for daily threshold of WBGTmax > 32°C (2,979) urban settlements, turquoise), 
WBGTmax > 30°C (5,985 urban settlements, blue), WBGTmax > 28°C (7,628 urban 
settlements, pink), and no exposure trend measured at these thresholds (5,507 urban 
settlements, gray).  
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Table S1: Recently published global extreme heat studies. All studies use temperature 
input data that is coarser resolution than CHIRTS-daily (4) and those that use PGF or 
ERA5 likely underestimate extreme heat (4). The two studies (5, 6) that measure baseline 
population exposure do not delineate urban from rural exposure, nor assess how exposure 
trajectories have changed over time.  
Year 
Publishe
d

Heat Metric(s) Population 
Exposure Baseline 
Measured?

Temperatur
e Data

Spatial 
Resolution

Referen
ce

2021 3 day or longer periods 
where daily minimum air 
temperatures (Tmin) > 99th 
percentile of daily Tmin 
over baseline (1985 - 
2005) 

Yes, global persons 
> 65 years old 1980 - 
2020

ERA5 0.5° × 0.5° (5)

2020 Wet-bulb temperature > 
35°C

No HadISD point data (7)

2020 Variable - models heat-
mortality relationship 
globally

No PGF, BEST administrative 
boundaries

(8)

2017 Plots daily maximum air 
temperatures (Tmax) 
against relative humidity 
(RH) to identify mortality 
risk (person-days)

Yes, global total 
population ~2000

NCEP-DOE 
Reanalysis 2

1.5° × 1.5° (6)

2017 Wet-bulb temperature 30 - 
35°C (person-days) 

No, projected 
exposure only

NCEP-DOE 
Reanalysis 2

2° × 2° (9)

2017 Heat index > 40.6°C 
(person-days), standard 
wet bulb globe 
temperature > 35°C 
SWBGT, and dry bulb > 
37.6°C 

No, only subset of 
44 cities reported

ERA-Interim 0.5° × 0.5° (10)
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Table S2. Regions ranked by annual rate of increase in exposure from 1983 – 2016, with 
the percent of the global exposure trend, as well as percent contribution from total urban 
warming and urban population growth to the total exposure trajectories for each country 
using WBGTmax > 30°C.See Materials and Methods for link to the entire dataset.  

All data points are significant at p < 0.001, unless otherwise indicated. ** p <0.01, * p < 0.05,  

2017 Apparent heat wave index, 
new percentile-based 
metric that combines 
temperature and humidity

No ERA-
Interim, 
Reanalysis 2

1.875° × 
1.875°

(11)

2016 Wet bulb globe 
temperatures (WBGT) 

No, focuses on lost 
labor productivity

CRU 0.5° × 0.5° (12)

Ran
k

Region Total Exposure  
(106 people-days 
yr-1)

Pct. of 
Global 
Total 

Pct. from 
Warming

Pct. from 
Population 
Growth

1 Southern Asia 1265.8 60% 35% 65%

2 Western Asia 299.9 14% 30% 70%

3 South-eastern Asia 173.5 8% 35% 65%

4 Sub-Saharan Africa 158.8 8% 30% 70%

5 Eastern Asia 124.6 6% 31%† 69%

6
Latin America and the 
Caribbean 41.6 2% 40% 60%

7 Northern Africa 35.8 2% 27%** 73%

8 Northern America 8.6** 0% 37%† 63%

9 Central Asia 0.1† 0% -8%† 108%

10 Melanesia 0.1 0% 27% 73%

11 Australia and New Zealand 0.1† 0% 53%† 47%*

12 Eastern Europe 0† 0% 53%† 47%*

13 Northern Europe 0† 0% 83%† 17%†

14 Western Europe 0† 0% 74%† 26%†

15 Southern Europe 0† 0% 137%† -37%†

 15



† not significant.  

Table S3. Top 25 countries worldwide ranked by annual rate of increase in exposure from 
1983 – 2016, with the percent of the global exposure trend, as well as percent 
contribution from total urban warming and urban population growth to the total exposure 
trajectories for each country using WBGTmax > 30°C. See Materials and Methods for link 
to the entire dataset.  
Rank Country Total Exposure  

(106 people-days yr-1)
Pct. of 
Global Total

Pct. from 
Warming

Pct. from 
Population 
Growth

1 India 1104 52.4% 38% 62%

2 Bangladesh 166.6 7.9% 37% 63%

3 Pakistan 143.1 6.8% 18% 82%

4 China 117.5 5.6% 28%† 72%

5 Nigeria 66 3.1% 39% 61%

6 Thailand 42.1 2% 25%** 75%

7 Vietnam 39.8 1.9% 33% 67%

8 Iraq 39.3 1.9% 38% 62%

9 Saudi Arabia 29.1 1.4% 19% 81%

10 United Arab Emirates 28.6 1.4% 3% 97%

11 Philippines 28.6 1.4% 32%** 68%

12 Myanmar 25.4 1.2% 46% 54%

13 Mexico 18.1 0.9% 34% 66%

14 Indonesia 17.5 0.8% 52%** 48%

15 Egypt 16.4 0.8% 53% 47%
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All data points are significant at p < 0.001, unless otherwise indicated. ** p <0.01, * p < 0/05,  
† not significant. 

16 Sudan 14.8 0.7% -5%† 105%

17 Iran 13.1 0.6% 17% 83%

18 Chad 11.9 0.6% 18%** 82%

19 Senegal 10.8 0.5% 37% 63%

20 Yemen 10.3 0.5% 6% 94%

21 Singapore 10.1 0.5% 41%** 59%

22 Niger 9 0.4% 26% 74%

23 United States 8.6** 0.4% 37%† 63%

24 Venezuela 7.6 0.4% 39% 61%

25 Kuwait 7.5 0.4% 33% 67%
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Table S4. Top 50 urban settlements worldwide ranked by annual rate of increase in 
exposure from 1983 – 2016, with the percent of the global exposure trend, as well as 
percent contribution from total urban warming and urban population growth to the total 
exposure trajectories for each country using WBGTmax > 30°C. See Materials and 
Methods for link to the entire dataset.  

Ra
nk

Urban 
Settlement Country

Total Exposure  
(106 people-days 
yr-1)

Pct. 
of 
Glob
al 
Total

Pct. from 
Warming 

Pct. from 
Population 
Growth

1 Dhaka Bangladesh 57.5 2.7% 20% 80%

2 Delhi India 55.4 2.6% 26% 74%

3 Kolkata India 52.2 2.5% 52% 48%

4 Bangkok Thailand 36.5 1.7% 18% 82%

5 Mumbai India 29.3 1.4% 46% 54%

6 Karachi Pakistan 26.6 1.3% 25% 75%

7 Chennai India 26.1 1.2% 26% 74%

8 Dubai
United Arab 
Emirates 22.5 1.1% 2% 98%

9 Lahore Pakistan 20.2 1% 9%† 91%

10 Manila Philippines 18.3 0.9% 33%** 67%

11 Ahmadabad India 17.3 0.8% 27% 73%

12 Guangzhou China 15.3 0.7% 4%† 96%

13
Ho Chi Minh 
City Vietnam 13.4 0.6% 21%** 79%

14 Shanghai China 13.4 0.6% 16%† 84%
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15 Lagos Nigeria 13 0.6% 42%** 58%

16 Jiddah Saudi Arabia 11.5 0.5% 11%** 89%

17 Comilla  Bangladesh 11.5 0.5% 45% 55%

18 Lucknow India 11.3 0.5% 29% 71%

19 Yangon Myanmar 11.2 0.5% 7% 93%

20 Singapore Singapore 10.1 0.5% 41%** 59%

21 Baghdad Iraq 9.9 0.5% 49% 51%

22 Benares India 9.7 0.5% 31% 69%

23 Surat India 9.6 0.5% 15%* 85%

24 Ha Noi Vietnam 9.6 0.5% 13%** 87%

25 Patna India 8.4 0.4% 26% 74%

26 Faisalabad Pakistan 8 0.4% 11%** 89%

27 Shantou China 7.7 0.4% 40%* 60%

28 Kanpur India 7.6 0.4% 52% 48%

29 Kuwait City Kuwait 7.2 0.3% 31% 69%

30 Asansol India 7.1 0.3% 50% 50%

31 Multan Pakistan 6.7 0.3% 15% 85%

32 Allahabad India 6.6 0.3% 26% 74%

33 Cairo Egypt 6.3 0.3% 54% 46%

34 Khartoum Sudan 6.2 0.3% 7%† 93%

35 Agra India 6.1 0.3% 27% 73%

36 Ar-Rayyan Qatar 5.9 0.3% 5% 95%

37 Gujranwala Pakistan 5.4 0.3% 10%* 90%

38 Hyderabad Pakistan 5.4 0.3% 22% 78%

39 Suzhou, Jiangsu China 5 0.2% 20%† 80%

40 Chittagong Bangladesh 5 0.2% 46% 54%

41 Maracaibo Venezuela 4.8 0.2% 38% 62%

42 Gorakhpur India 4.8 0.2% 31% 69%

43 Ad-Dammam Saudi Arabia 4.8 0.2% 20% 80%

44 Hyderabad India 4.8 0.2% 50% 50%

45  Kousseri Chad 4.5 0.2% 24% 76%

46 Manama Bahrain 4.3 0.2% 12% 88%

47 Faizabad India 4.2 0.2% 33% 67%
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All data points are significant at p < 0.001, unless otherwise indicated. ** p <0.01, * p < 0/05,  
† not significant.  
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