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Positive feedbacks promote power-law clustering
of Kalahari vegetation
Todd M. Scanlon1, Kelly K. Caylor2, Simon A. Levin3 & Ignacio Rodriguez-Iturbe4

The concept of local-scale interactions driving large-scale pattern
formation has been supported by numerical simulations, which
have demonstrated that simple rules of interaction are capable of
reproducing patterns observed in nature1,2. These models of self-
organization suggest that characteristic patterns should exist
across a broad range of environmental conditions provided that
local interactions do indeed dominate the development of com-
munity structure. Readily available observations that could be
used to support these theoretical expectations, however, have
lacked sufficient spatial extent or the necessary diversity of envir-
onmental conditions to confirm the model predictions. We use
high-resolution satellite imagery to document the prevalence of
self-organized vegetation patterns across a regional rainfall gra-
dient in southern Africa, where percent tree cover ranges from
65% to 4%. Through the application of a cellular automata model,
we find that the observed power-law distributions of tree canopy
cluster sizes can arise from the interacting effects of global-scale
resource constraints (that is, water availability) and local-scale
facilitation. Positive local feedbacks result in power-law distribu-
tions without entailing threshold behaviour commonly associated
with criticality. Our observations provide a framework for inte-
grating a diverse suite of previous studies that have addressed
either mean wet season rainfall or landscape-scale soil moisture
variability as controls on the structural dynamics of arid and semi-
arid ecosystems.

Scale is an essential factor in linking pattern and process3, and an
adequate characterization of tree canopy distributions must span
scales ranging from that of individual to that of the landscape.
Large-scale plot studies such as those at Barro Colorado Island and
a limited number of other locations have proven to be extremely
valuable for defining vegetation characteristics such as canopy gap
distribution1,4 and species-specific clustering5. The massive amount
of manual sampling required to compile these data sets, however,
places a practical limitation on their widespread collection. High-
resolution remote sensing is an alternative for detecting landscape-
level vegetation pattern, and one that is particularly well suited for
monitoring sparse vegetation in which individual tree canopies can
be distinguished6. The ease by which these data can be acquired
allows for a more geographically widespread detection of large-scale
spatial patterns.

Inferring process from vegetation pattern has been a fundamental
motivation of many landscape ecological studies, yet unambiguous
determination of the factors that generate and maintain patterns is
often obfuscated by the existence of multiple mechanisms that can
give rise to commonly observed spatial arrangements. For example,
random patterns can be indicative of the absence of spatial inter-
actions, but random patterns are also known to emerge from strong
competitive interactions7. Aggregated patterns, such as those

routinely observed for woody tree species in natural communities,
have been attributed to the disparate mechanisms of dispersal limit-
ation8 and habitat differentiation9. It has been suggested that the
identification of dominant processes that lead to emergent vegetation
pattern could benefit from a more thorough statistical measure of the
vegetation spatial structure that implicitly considers the broad range
of spatial scales over which aggregation occurs, rather than simply
characterizes the average aggregation tendency of individuals10. We
adopt such an approach in applying cluster size analysis to tree
canopy distributions and evaluate the consistency of the patterns
over a range of environmental conditions.

Remote sensing analysis focuses on the Kalahari Transect in south-
ern Africa, one in a number of worldwide International Geosphere-
Biosphere Programme transects11 that spans a mean annual rainfall
gradient from approximately 1,200 to 200 mm per year. IKONOS
satellite images were acquired for six locations along the Kalahari
Transect during the 2000 wet season to augment concurrent field
surveys, which have produced detailed information about the
savanna vegetation12,13. Common to each of these locations is the
homogeneous sand formation that underlies them (Supplementary
Fig. 1), a feature that provides constant background spectral reflec-
tance for remote sensing and acts as a normalizing factor for com-
paring rainfall–vegetation relationships between sites. A strong
correlation (r2 5 0.84, n 5 10) exists between mean wet season rain-
fall (�rr) and fractional tree cover (ft), both established from ground-
based measurements12. Key descriptors of the individual sites are
listed in Table 1 and spatial arrangements of tree canopies derived
from the IKONOS images are shown in Fig. 1a.

We describe the distribution of cluster sizes within each landscape
using the inverse cumulative distribution, which is the probability
that a cluster area (A) is greater than or equal to a, P(A $ a). To
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Table 1 | Kalahari site characteristics

Site Lat./Lon. �rr (mm) ft �cc (m2) Dominant tree species

Mongu, Zambia 14.42u S,
23.52u E

879 0.65 14.4 Brachystegia spiciformis

Senanga, Zambia 15.86u S,
23.34u E

811 0.54 23.1 Brachystegia spiciformis

Pandamatanga,
Botswana

18.66u S,
25.50u E

698 0.32 15.8 Schinziophyton
rautanenii,
Baikiaea plurijuga

Sandveld, Namibia 22.02u S,
19.17u E

409 0.19 3.3 Terminalia sericea

Tshane, Botswana 24.17u S,
21.89u E

365 0.14 10.3 Acacia erioloba

Vastrap, South Africa 27.75u S,
21.42u E

216 0.04 2.0 Acacia erioloba

Mean annual rainfall, �rr, is extrapolated from nearby meteorological stations. Fractional tree
cover, ft, mean canopy area, �cc, and the dominant species are derived from 0.25–1.0 ha stem map
surveys of the sites12,13. Lat., latitude; Lon., longitude; S, south; E, east.
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determine the size of contiguous clusters, we defined ‘connected’ tree
pixels as those connected through any shared edge (that is, von
Neumann neighbourhood; four immediate neighbours, no diago-
nals). In Fig. 1b, we provide the probability distribution for each of
the six sites. These distributions demonstrate power-law relation-
ships conforming to P(A $ a) a a2b over a wide range of scales at
all sites, with the possible exception of Tshane, where the cluster size
distribution more closely resembles an exponential relationship. At
the Mongu site, the single cluster that lies outside the power relation-
ship corresponds to a cluster that spans the entire image being ana-
lysed. Power-law cluster size distributions such as these observed in
the Kalahari have been cited as evidence of criticality14, in which small
perturbations to a forcing variable can lead to rapid and widespread
changes to the ecosystem state (that is, savanna tree cover).

The ubiquity of power-law distributions of tree canopy cluster
sizes merits further scrutiny. The coefficient of determination R2

may be relatively high when fitting log–log relationships without
any dynamic causality. In addition, percolation theory predicts the
existence of power-law cluster size distributions for uniform random
patterns at a fractional cover of approximately 0.59 for a square lattice
with the von Neumann neighbourhood15. To determine the signifi-
cance of our results and to provide a benchmark for our subsequent
modelling analyses, we compare our observed distributions at each
site to those produced by a neutral model16. The neutral model gen-
erates patterns by randomly assigning occupancy within a 500 3 500
matrix until the percentage of occupied pixels matches the overall site
percentage cover. In this way, the neutral model matches the global
constraint on tree cover, but contains no additional spatial processes.
At each site we estimate the probability distribution function result-
ing from each of 1,000 simulations.

As shown in Table 2, the resulting random neutral models are
largely unsuccessful in meeting the criteria of having both (1) an
R2 value greater than 0.98 (as exhibited by most of the satellite data),
and (2) a size distribution spanning at least one and a half orders of
magnitude. The latter condition was imposed to eliminate seemingly
strong power-law relationships that can result from a deficiency of
scales17. Cluster distributions derived from the satellite data dem-
onstrate a tendency to form power-law distribution over a broad
range of fractional covers, including at densities far from the percola-
tion threshold (for more general fits to the satellite data, see
Supplementary Table 3). The persistence of this scale-invariant tree
pattern at sites along the Kalahari rainfall gradient begs a mechanistic
understanding of the processes that lead to this emergent statistical
property.

Power-law clustering has been observed in nature for a variety of
phenomena, including mussel beds18, forest gaps19 and forest fires20,
and the pattern-formation processes for these systems have been
evaluated through the implementation of lattice-based cellular auto-
mata models, in which complex system dynamics are represented by
simple rules of interaction. What makes the present study distinct
from these earlier findings is that the observed statistical pattern is
maintained over an environmental gradient for a wide range of
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Figure 1 | Satellite observations of tree canopies and cluster size
distributions. a, Binary data showing map views of the remotely sensed tree
canopies, in which black points refer to the location of trees. The overall field
of view is 2 km 3 2 km, and the resolution is 4 m. Tree canopies were
classified by thresholding the normalized difference vegetation index in the
IKONOS scenes to match the fractional tree cover (ft) measured in the field
at each site. b, Cluster analysis of the tree canopy matrices, plotted as an
inverse cumulative distribution on log–log axes. Power-law clustering is
evident for a majority of the Kalahari sites, which vary widely in tree
fractional cover along the rainfall gradient.

Table 2 | Random neutral model versus cellular automata model.

Random neutral model Cellular automata model

ft R2

obs R2 $ 0.98 amax/amin

. 10
1.5

Both true R2 $ 0.98 amax/amin

. 10
1.5

Both true

0.65 0.98 802 1,000 802 849 1,000 849

0.54 0.98 0 1,000 0 944 1,000 944

0.32 0.98 0 1,000 0 993 1,000 993

0.19 0.99 0 0 0 701 1,000 701

0.14 0.94 605 0 0 652 1,000 652

0.04 0.98 455 0 0 577 969 577

Fits indicate the ability of models to produce power-law distributions, such as those detected
from the satellite data. A total of 1,000 distributions were generated for each fractional
cover. The number of model realizations in which the power law R2 fit exceeded a threshold of
0.98 (R2 $ 0.98) and/or the distributions spanned at least one and a half orders of magnitude
(amax/amin . 101.5) are provided.
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vegetation densities. Any model capable of simulating the pattern-
formation processes must meet the rigorous criteria of being strictly
self-organizing (that is, no ‘fine tuning’ of parameters) and robust
with respect to external environmental forcing. A recent survey of
models used to produce power-law cluster size distributions in eco-
logical systems14 did not identify a general type that could satisfy the
above conditions for a two-phase system (for example, presence/
absence of trees). Disturbance-based models such as those typically
used to describe power-law cluster formation do not seem to be
realistic for the Kalahari setting. For instance, forest fire models21,
although capable of producing power-law cluster sizes, are not phys-
ically realistic because fire in this region is generally low-intensity and
does not cause widespread mortality of trees22.

Satellite observations and field surveys indicate that rainfall exerts
a global control on tree density along the water-limited Kalahari
Transect12,23, whereas local interactions influence the spatial arrange-
ment of individuals. A form of cellular automata model consistent
with this framework is the Ising model of ferromagnetism, the two
parameters of which account for global and local effects on transition
dynamics. This model has previously been applied to reproduce an
observed power-law gap size distribution in a neotropical forest4.
Adapting the Ising model to account for the self-organized behaviour
in the present case, however, is unsatisfactory given that it requires
calibration to converge on power-law cluster size distributions. We
therefore modified the model by linearizing the functional depend-
ence of the transition probability on the neighbourhood and global
structure, as well as by considering the influence of individuals
beyond the von Neumann neighbourhood (see discussion in
Supplementary Information). With no calibration, the model was
capable of producing power-law cluster size distributions with
R2 $ 0.98 at success rates of 57.7–99.3% for the six Kalahari
Transect sites (Table 2). An example of the model output is shown
in Fig. 2.

Power-law cluster size distributions are hallmarks of self-organ-
ization24, and the consistent statistical pattern observed in the
Kalahari points to internal feedbacks, rather than imposed spatial
heterogeneity, in determining landscape-level vegetation distri-
bution. An additional concept commonly associated with power-
law cluster size distributions is criticality, which signifies a system
poised at a phase transition25. This raises the question: is the Kalahari

ecosystem in a critical state such that small perturbations could result
in rapid phase change (for example, desertification) from local inter-
actions? This is highly unlikely, because disturbance propagation is
required over relatively short timescales, and there is no physically
based mechanism for this in the Kalahari. Furthermore, the model
presented here exemplifies power-law formation in the absence of
threshold behaviour and large, temporally intermittent fluctuations.
If the dynamics were to be consistent at all with a critical state it
would be with the kind of ‘robust’ criticality recently described14.
Climate-driven phase transitions are possible in the Kalahari, but
most likely are due to the global properties of the system through
positive vegetation–climate feedbacks, as reported in the Sahel region
of Africa26.

We infer that the emergent spatial pattern in the Kalahari results
from positive spatial feedbacks, in which the probability of establish-
ment increases with local tree density, and the probability of mortal-
ity increases with greater open space in the vicinity of the tree. Water
availability is hypothesized to be the main driver of these positive
feedbacks, as below-canopy areas remain wetter in savanna ecosys-
tems27 owing to reduced bare soil evaporation from shading. Direct
measurements of soil moisture at a number of locations along the
Kalahari Transect have confirmed this general finding. Establishment
is thus favoured in areas surrounded by trees, but this positive den-
sity-dependence can also be accounted for by seed dispersal28 and
nutrient availability29, both of which are enhanced near existing tree
canopies. Mortality brought on by water stress during dry years
would be more pronounced for trees that do not have the benefit
of neighbourhood shading, and increased lateral hydraulic gradients
would deplete the soil moisture even further for these isolated indi-
viduals. Positive feedbacks of this type could lead to either desert or
fully forested conditions30, were it not for the density-independent
global effect of rainfall. This, together with the distance-weighted
local effects, leads to stable power-law cluster size distributions over
a wide range of vegetation densities.

METHODS SUMMARY

The cellular automata model considers both local and global effects on transition

probabilities between two states: tree canopy (t) and non-tree canopy (o). The

local effect is governed by the neighbourhood tree density, rt, which is weighted

as a function of distance, d, away from the cell undergoing possible transition

Satellite image (Pandamatenga) Global constraint only
Global constraint with
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Figure 2 | Observations and models of tree canopy clustering. a, b, Satellite-
observed tree cover for the Pandamatenga, Botswana site (a), and its inverse
cumulative distribution that approximates a power-law fit (b). c, d, Spatial
distribution of tree canopies produced by a random neutral model that
considers only a global constraint on tree density (c), along with the inverse

cumulative distribution (d), which approximates an exponential
distribution of cluster sizes. e, f, Cellular automata-derived tree canopy
distribution that accounts for both global constraints and positive local
feedbacks on tree densities (e), with the scale-invariant distribution of
cluster sizes resembling that of the satellite data (f).
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according to a Pareto-type function. The spatial ‘immediacy’ of the neighbour-
hood effect is represented by the parameter k in the Pareto-like weighting

(dmin/d)k, where dmin is the minimum distance between cells in the model

domain (4 m). A value of 3.0 was used for k in all simulations; this magnitude

seems to affect b, but not the ability of the model to produce power-law cluster

size distributions. The larger the value of k, the greater the weight placed on the

tree density within the immediate vicinity of the cell in regard to its impact on rt ,

which is defined as:

rt~
X
Vi,j,M

dmin=di,j

� �k
xi,j

,X
Vi,j,M

dmin=di,j

� �k
:

Here, Vi,j,M represents all positions i,j within a circular neighbourhood of

radius M, and xi,j equals 1 for a tree canopy and 0 for non-tree canopy. The

ability of the model to simulate power-law cluster size distributions is not con-
tingent with the use of the Pareto weighting scheme; other functional forms

representing diminished influence as a function of distance within the local

neighbourhood are similarly efficient in generating power laws (see Supple-

mentary Discussion).

The global effect on transition probability has the impact of aligning the

overall fractional tree cover, ft, with the fractional tree cover associated with

the mean annual rainfall, ft*, as determined by the observed linear relationship

between these two variables. A linear combination between local and global

effects yields the transition probabilities: P(oRt) 5 rt1(ft* 2 ft)/(1 2 ft) and

P(tRo) 5 (1 2 rt)1(ft 2 ft*)/ft. For each year of the simulation, 20% of the cells

within the model domain were randomly selected for possible transition.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Satellite data analysis. Several of the original 9 km 3 9 km IKONOS scenes of

the study sites contained cloud cover and noticeable human alterations to the

landscape. We avoided these effects by limiting the vegetation pattern analysis to

2 km 3 2 km subsampled areas that were representative of the surrounding land-

scape. Red and near-infrared channels of the IKONOS images, which have a

resolution of 4 m, were used to construct 500 3 500 matrices of normalized

difference vegetation index (NDVI). Field measurements of fractional tree

cover12 were used to threshold the NDVI, resulting in binary matrices of the tree

cover (Fig. 1a). This methodology relies on the assumption that pixels with the
highest NDVI correspond to tree canopies, and the thresholding procedure

effectively filters out the between-canopy areas of grass and bare soil.

Cellular automata model implementation. All model runs were initiated with

50% fractional tree cover, randomly distributed throughout a 500 3 500 model

domain. Ten model runs were performed for each of the six locations along

the Kalahari Transect, characterized by their respective mean annual rainfall.

After spin-up periods of 200 yr, cluster size distributions were evaluated from

‘snapshots’ of the model output each year over 100-yr timeframes (note that

‘years’ represents the model time step, which should not necessarily be equated

with actual time evolution).

In the numerical implementation of the Pareto weighting scheme for the local

density, a value of M was chosen such that the cumulative distribution function

at this radius exceeded 0.999. A linear combination of local and global effects

yields the transition probabilities. In rare cases when the calculated transition

probability falls outside the range {0,1}, the probability is made equal to either 0

or 1.
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