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Mountains and hills are generally less economically viable 
and environmentally suitable for intensive agriculture 
than low-lying and non-sloping lands. Based on this 

premise, the United Nations Food and Agriculture Organization 
(FAO) projected little to no additional net cropland expansion 
within global mountains1, a projection that has been incorporated 
into future scenarios for climate change impact assessments2–4. 
However, the reality of the past decade deviates from this 
expectation for many sub-tropical and tropical mountains4,5. 
High-resolution forest cover datasets4–6 reveal that farmers have 
been carving a new agricultural frontier, causing high rates of 

mountain forest loss in several areas7. Forest conversion to crops 
in the tropics affects climate by causing a decrease in evapotrans-
piration (warming) and an increase in albedo (cooling), leading to 
an overall local warming effect8–11. This local warming, superim-
posed on regional climate change2, may cause a greater threat to the 
region than expected. Globally, the climate feedbacks of deforesta-
tion are regulated by latitude, ranging from warming in the tropics 
to cooling in the mid- to high latitudes12–14. By analogy, we expect 
deforestation-induced warming over tropical mountain regions 
to also be regulated by elevation, as the evapotranspiration effects 
possibly attenuate at higher altitudes.
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Agriculture is expanding in tropical mountainous areas, yet its climatic effect is poorly understood. Here, we investigate 
how elevation regulates the biophysical climate impacts of deforestation over tropical mountainous areas by integrating 
satellite-observed forest cover changes into a high-resolution land–atmosphere coupled model. We show that recent for-
est conversion between 2000 and 2014 increased the regional warming by 0.022 ± 0.002 °C in the Southeast Asian Massif, 
0.010 ± 0.007 °C in the Barisan Mountains (Maritime Southeast Asia), 0.042 ± 0.010 °C in the Serra da Espinhaço (South 
America) and 0.047 ± 0.008 °C in the Albertine Rift mountains (Africa) during the local dry season. The deforestation-driven 
local temperature anomaly can reach up to 2 °C where forest conversion is extensive. The warming from mountain deforestation 
depends on elevation, through the intertwined and opposing effects of increased albedo causing cooling and decreased evapo-
transpiration causing warming. As the elevation increases, the albedo effect increases in importance and the warming effect 
decreases, analogous to previously highlighted decreases of deforestation-induced warming with increasing latitude. As most 
new croplands are encroaching lands at low to moderate elevations, deforestation produces higher warming from suppressed 
evapotranspiration. Impacts of this additional warming on crop yields, land degradation and biodiversity of nearby intact eco-
systems should be incorporated into future assessments.
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We addressed this research question over four tropical moun-
tain regions (Fig. 1); namely, the Southeast Asian Massif (SE1), the 
Barisan Mountains in Maritime Southeast Asia (SE2), the Serra da 
Espinhaço in South America (SA) and the Albertine Rift mountains 
in Africa (AF). Supplementary Figs. 1 and 2 show the net forest 
loss in hectares and the percentage for each 5 km × 5 km grid cell 
during 2000–2014. Taking SE1 as an example, the total forest loss 
amounted to 3.2 million hectares, an area 20 times greater than that 
of Bangkok, the largest city within the region. Half of the forest 
loss occurred in the areas with low elevation concentrated around 
Cambodia, while the other half was distributed in the mountain-
ous areas, mainly in Laos and northern Thailand around Nan 
Province (Supplementary Fig. 1). Earth system models and global 
climate models not only ignore mountain cropland expansion in 
their scenarios, but also have too coarse a resolution to represent 
topographic effects on climate2,4. For this reason, we coupled the 
satellite-observed, agriculturally driven forest conversion4 into a 
high-resolution regional climate model over the four regions expe-
riencing cropland expansion. The model is a recent version of the 
Weather Research and Forecasting model coupled with the Noah 
Land Surface Model (WRF–Noah, version 3.8.1)15,16, which takes a 
mosaic approach to incorporating homogeneous, non-interacting 
sub-grid tiles17.

The grid spacing for our study areas was 5 km × 5 km, ensur-
ing that the orographic variations were adequately represented 
(Supplementary Figs. 1 and 2). During the dry season, agricultural 
lands in many mountainous areas are bare ground (for example, 
Supplementary Fig. 3). Accordingly, the areas deforested during 
2000–2014 were treated as cropland in the lowlands (<300 m) and 
as bare ground in the highlands (≥300 m) in the model based on 
the reported threshold to distinguish lowland and highland over 

tropical mountains4,18. These simulations were performed during 
the local dry season for the year 2014 using lateral boundary condi-
tions from ERA5 (the fifth‐generation reanalysis of the European 
Centre for Medium-Range Weather Forecasts19) and forest cover 
in the year 2014 compared with a control run with forest cover in 
the year 2000 (refer to Supplementary Figs. 4–8 and the Methods 
for more details). We assessed the uncertainty associated with the 
climate background using simulations in other dry seasons during 
2012–2016. We also assessed the uncertainty associated with the lat-
eral boundary conditions using the simulations driven by FNL (the 
National Centers for Environmental Prediction Final Operational 
Global Analysis data)20.

Biophysical climate impacts of mountain deforestation
Consistent with reports of a net warming effect caused by tropi-
cal deforestation12,14, we found a general temperature increase trig-
gered by agriculturally driven deforestation in the four mountain 
regions during 2000–2014 (Fig. 1b–e). In the SE1 region, the mean 
temperature increased significantly by 0.022 °C (95% confidence 
interval (CI) = 0.020–0.024 °C; t-test statistics: t-value = 22.16; 
degrees of freedom = 88; P < 0.01). This increase in surface air 
temperature, if accounted for in the global climate models for the 
Intergovernmental Panel on Climate Change, would lead to an 
additional increase of 22.7% in regional warming in the twenty-first 
century under Representative Concentration Pathway 2.6 (RCP2.6), 
or 8.1% and 6.6% under RCP4.5 and RCP6.0, respectively. The pat-
tern of temperature change is heterogeneous, primarily originating 
from highland deforestation in northern Thailand and northern 
Laos (Fig. 1b and Supplementary Fig. 1). For example, mountain 
forest conversion in a mountainous area of Nan Province of north-
ern Thailand (−14.8%; for location and landscape information, see 
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Fig. 1 | Simulated temperature change resulting from deforestation in tropical mountains. a, Spatial pattern of satellite-observed forest loss during 2000–
2014 within 0.5° × 0.5° grid cells and the inner domains for numerical simulations. b–e, Modelled temperature change at 5 km × 5 km grid cells triggered by 
forest cover change over SE1 (b), SE2 (c), SA (d) and AF (e). The effect was calculated as the difference between the simulations using the lower boundary 
with and without forest cover change. Dotting represents significance at P < 0.05.
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Supplementary Figs. 1a and 3) significantly increased the tempera-
ture by 0.17 °C (P < 0.01; Supplementary Fig. 8). Similarly, the spa-
tial patterns of temperature change match the distribution of forest 
loss in the SE2, SA and AF regions, in which the simulated tempera-
ture also increased significantly, up to 0.010 °C (95% CI = 0.004–
0.017 °C; P < 0.01), 0.042 °C (95% CI = 0.033–0.052 °C; P < 0.01) 
and 0.047 °C (95% CI = 0.039–0.055 °C; P < 0.01), respectively  
(Fig. 1c–e and Supplementary Fig. 2). However, in some areas 
where little forest was converted, the effects of increased albedo 
overwhelmed those from the decreased evapotranspiration, leading 
to an overall local temperature decrease (for example, in parts of 
northern Laos and eastern Thailand; Fig. 1b).

The temperature change was positively correlated with the per-
centage of forest loss in the grid cells in both the highlands and 
the lowlands, but with different magnitudes (Fig. 2). The correla-
tion coefficients ranged from 0.78–0.86 (P < 0.01) in the highlands 
over all four regions, whereas the correlation coefficient was no 
more than 0.36 in the lowlands over the three regions except for 
AF. Moreover, the sensitivities of dry season temperature change to 
forest loss in the highlands and the lowlands were different. Taking 
SE1 as an example, there was an increase of 0.16 °C per 10% of forest 
loss in the highlands. Full forest loss in a grid cell (100% forest loss; 
hereafter, deforestation) therefore resulted in a temperature increase 
of 1.63 °C (95% CI = 1.61–1.64 °C; P < 0.01). However, in the low-
lands, where the sensitivity was weaker, the temperature change 
from deforestation was only 0.04 °C (Fig. 2a). The sensitivities of 
temperature change to highland deforestation over SA and AF were 
1.53 and 1.50 °C, respectively (Fig. 2c,d)—values that are close to 
that for SE1. In the coastal mountain region SE2, the sensitivity was 
smaller in comparison (0.88 °C; Fig. 2b).

Irrigation in lowland areas allows for intensive year-round 
agriculture, but crops cannot be grown intensively throughout an 
entire year at high elevations. Rain-fed croplands therefore have 
minimal surface vegetation during the dry season (for example, 
Supplementary Fig. 3). The contrast in biophysical properties 
between forest and bare ground in the highlands was greater than 
that between forest and quasi-permanent cropland in the lowlands, 
resulting in different sensitivities of temperature change to defores-
tation (Fig. 2). The temperature change caused by afforestation in 
the highlands depends on the type of land use change. In this study, 
forest gain was mainly the result of conversion from cropland/
grassland. In this scenario, the opposing effects of decreased albedo 
causing warming can neutralize the increased evapotranspiration 
causing cooling, explaining the lack of sensitivity of temperature to 
forest gain (Fig. 2).

Deforestation-induced warming regulated by elevation
Our analyses further showed an elevational effect on temperature 
change caused by agriculturally driven deforestation. Highland 
deforestation caused a net increase in local temperature that sig-
nificantly weakened with increasing elevation (P < 0.01; Fig. 3) in 
all four regions. In SE1, deforestation caused a highland heat island 
effect by increasing the local air temperature by 1.84 ± 0.03 °C at 
an elevation of 350 ± 50 m (P < 0.01). As the elevation increased, 
the effect decreased to 1.56 ± 0.02 °C at 750 ± 50 m (P < 0.01; inset 
in Fig. 3a), falling to 0.67 ± 0.05 °C at 1,400 ± 50 m (P < 0.01). The 
effect became insignificant at elevations greater than 1,600 m, with 
few samples above this threshold (Fig. 3a).

The climatic impacts of mountain deforestation over the  
other three regions were also regulated by elevation, although the 
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Fig. 2 | Temperature change versus percentage of forest loss for 2000–2014 at the grid level. a–d, The temperature change at each grid cell was 
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sensitivities varied (Fig. 3b–d). In SA, the effect was greatest at 
450 ± 50 m (1.81 ± 0.01 °C; P < 0.01) and decreased at higher eleva-
tions. In AF, deforestation caused a temperature change of more 
than 1.48 °C between 450 and 1,000 m; it then decreased gradually  
(Fig. 3d), eventually becoming insignificant for elevations >3,000 m. 
The pattern over SE2 was generally similar to the other regions, but 
the magnitude of sensitivity was lower (Fig. 3b). Nevertheless, defor-
estation was more widespread in low-elevation mountains than at 
high elevations (Fig. 3). Taking SE1 as an example, 83% of highland 
forest area loss was at elevations ranging from 300 to 1,000 m, with 
17% between 1,000 and 1,600 m and very limited forest loss above 
1,600 m. Thus, the mean regional temperature increases were domi-
nated by deforestation from low-elevation mountainous areas.

To examine further deforestation feedbacks with increasing 
elevation, we compared the albedo and evapotranspiration changes 
between the simulations with and without satellite-observed forest 
loss (Fig. 4 and Supplementary Fig. 10). Taking SE1 as an example, 
an increased area of forest loss resulted in a systematic increase in 
albedo and a decrease in evapotranspiration (Fig. 4a,b) for both 
lowland and highland areas. However, the sensitivities of albedo 
and evapotranspiration changes to percentage forest loss were 
greater in highlands compared with lowlands (Fig. 4a,b), explain-
ing the contrasting temperature change induced by lowland versus 
highland deforestation (Fig. 2a). In the highlands at an elevation 
of 350 ± 50 m, we found that deforestation significantly increased 

albedo by 0.249 ± 0.003 (P < 0.01; 56.43 ± 0.68 W m−2) and remark-
ably decreased evapotranspiration by 2.44 ± 0.04 mm d−1 (P < 0.01; 
70.61 ± 1.16 W m−2; Fig. 4c,d). The net change was an increase of 
14.18 W m−2 in the energy budget, implying that the warming 
induced by the reduction in evapotranspiration dominated the 
cooling by higher albedo values, resulting in a net warming effect.

As elevation increased, the deforestation-driven reduction in 
evapotranspiration significantly weakened (Fig. 4d) while the 
increase in albedo remained constant (Fig. 4c), explaining why 
deforestation-driven warming tends to decrease with elevation 
(Fig. 3a). The smaller evapotranspiration reduction from defor-
estation at higher elevations (Fig. 4d) could have been a result of 
the temperature lapse rate (0.72 °C decrease per 100 m elevation; 
Supplementary Fig. 11). Higher elevations lower the evaporative 
demand from temperature and water vapour pressure deficit, and 
thus, potential evapotranspiration, which dampens the sensitivity of 
evapotranspiration to forest cover losses. The deforestation-driven 
evapotranspiration and albedo change patterns over the other 
three regions were comparable with those from SE1 (Fig. 4 and 
Supplementary Fig. 10). In short, the overall temperature increase 
was mainly driven by deforestation in low-elevation mountains, 
where the evapotranspiration warming effect outweighed the 
albedo cooling effect.

To test the robustness of the elevation regulation concept, 
we focused on SE1 and repeated the analysis using simulations 
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during the four closest dry seasons to check whether variations 
in yearly monsoon and dry season characteristics influence the 
result (Supplementary Figs. 12 and 13). We also performed the 
analysis with FNL instead of the ERA5 lateral boundary con-
ditions to test the influence of large-scale conditions outside 
the domain (Supplementary Figs. 14 and 15). For elevations 
lower than 1,500 m where >99.85% of deforestation occurred, 
our findings were robust regardless of the year of simulation 
(Supplementary Figs. 12 and 13) or lateral boundary conditions 
used (Supplementary Figs. 14 and 15). The results were more 
uncertain at elevations higher than 1,500 m where very little 
deforestation occurred (n < 30).

We further used the change in equivalent temperature (TE)  
instead of surface air temperature to examine the elevation- 
dependent warming effects of mountain deforestation on sur-
face air moist enthalpy. By including both dry and moist terms, 
TE provides a good indicator of changes in the near-surface total 
heat content. For example, the relationship between TE change 
and forest loss in the SE1 highlands was overall consistent with 
the deforestation-induced local surface air temperature change 
(Supplementary Fig. 16a). TE increased with the percentage of forest 
loss in the highlands, whereas in the lowlands TE decreased instead, 
an effect that may be related to a decrease in specific humidity. The 
TE warming effect of highland deforestation significantly attenuated 
with elevation (Supplementary Fig. 16b), confirming the regulating 
role of elevation on the biophysical climate impacts of mountain 
deforestation (Fig. 3).

Comparison of the regulation by elevation versus latitude
Focusing on deforestation-prone tropical mountain regions4,21, we 
demonstrated an attenuation of deforestation-induced warming 
with elevation. This is caused by deforestation-led evapotrans-
piration decline with rising elevation, along with the compen-
sation by a constant albedo cooling effect. The intertwined and 
opposing biophysical climate feedbacks of deforestation result in 
an elevation-dependent overall local warming. This diagnosis of 
elevation-dependent biophysical climate impacts of deforestation 
is analogous to the latitudinal variation of the climate effects from 
forest cover change12,14. Nonetheless, forest cover change in mid- to 
high latitudes is dominated by afforestation21,22.

Previous research has revealed a critical latitude of 45° N 
that delineates the crossover of albedo-induced warming versus 
evapotranspiration-induced cooling for afforestation climatic feed-
backs12,22,23. For latitudes above this limit, the increased shortwave 
radiation and lower albedo increase from more leaf area result in 
a net warming effect. However, here, the critical elevation at which 
the sign of tropical mountain deforestation-related climate feed-
backs reverses is unknown. This may be due to an absence of snow 
in tropical mountain regions. In high-latitude mountainous areas, 
where snow (and its albedo effect) is frequently present, trees gen-
erally remain snow free on snowy days, leading to lower albedo in 
forested landscapes compared with open land. Furthermore, even 
if snow may cover some of the forest canopy, shortwave radiation 
is scattered rather than reflected. Hence, deforestation in boreal 
mountains, but not in snow-free tropical mountains, may incur an 
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additional albedo cooling effect that would offset warming from 
reduced evapotranspiration.

implications
The deforestation-induced highland heat island effect impacts 
not only deforested areas but also the surrounding areas within a 
radius of 50 km (ref. 24). This influence has several implications for 
regional environmental risks, including biodiversity loss, human 
and livestock health threats and lower crop yields. The SE1, SE2, 
SA and AF regions fall within the Indo-Burma biodiversity hotspot, 
the Sundaland biodiversity hotspot, Brazil’s Cerrado biodiversity 
hotspot and the Eastern Afromontane biodiversity hotspot, respec-
tively25,26, which harbour many endemic species that are highly sen-
sitive to climate change27,28. If mountain deforestation continues, 
endemic species in these regions will probably suffer greater extinc-
tion risks with the combined effects of habitat loss/degradation and 
concomitant warming29,30. In addition, local warming may increase 
the risk of extreme heat that threatens human health31, and worsen 
the living conditions of rural communities located at lower moun-
tain elevations32,33. Higher temperatures potentially increase the 
risks related to fire, as well as decreased crop quality and increased 
harvest failure34. Moreover, regional warming may reduce thermal 
barriers to the dispersal of insects and the potential pathogens they 
carry to highland areas, increasing the exposure of people, crops and 
livestock to greater risks of infection35. Meanwhile, as the tempera-
ture increases, insect pests consume more crops, further impacting 
agricultural yields36.

Our findings draw attention to the need for sustainable land 
management strategies to reduce degradation in mountains for 
climate change mitigation. Such strategies need to reconcile con-
servation with development. One feasible way, as recommended by 
the Intergovernmental Panel on Climate Change37, is to consider 
sustainability criteria in the global trade of land and land-based 
commodities. Another complementary bottom-up strategy, which 
is currently being considered in Nan Province, Thailand, is to: 
(1) intensify agriculture in lower-elevation hills where irrigation 
can be employed (around 22% of the world’s mountainous areas, 
as estimated by the FAO38); and (2) in tandem, reforest/rehabili-
tate previously converted areas at higher elevations. In support, 
the Nan Province government is planning to build 14 reservoirs 
over the next 10 years, partly to improve agriculture efficiency 
(Supplementary Fig. 17). These changes will not only conserve 
upland forests and the carbon they store, but will also reduce local 
warming in low-elevation mountains by enabling land to remain 
vegetated throughout the dry season.

In summary, this study shows that there is a profound heat 
island in deforestation-associated highlands and highlights the 
importance of using more realistic projections of land use change 
in future assessments. However, caveats and limitations remain. 
First, our work has not considered the biophysical climate effects 
of burned areas. Many farmers set fire to clear fields of agricultural 
waste. These fires directly increase local temperature by burning, 
and indirectly increase local temperature via reducing the albedo 
cooling effect as black charcoal from biomass burning absorbs more 
solar radiation39. Second, hillslope redistribution and lateral flow of 
groundwater can feedback to the atmosphere; thus, forest-to-crop 
conversion in hillslopes could involve multiple groundwater–atmo-
sphere interacting processes40. Yet, the current models have not 
incorporated lateral groundwater flow. Another caveat is the indi-
rect effects of clouds. Although clouds are parameterized in mod-
els, their effects are largely unclear. In addition, soil erosion can 
decrease the water holding capacity of soil, which in turn ampli-
fies evapotranspiration reduction caused by forest conversion. To 
improve the projections of land use change impacts, the next gen-
eration of high-resolution regional climate models should include 
these processes.
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Methods
Coupled Land–Atmosphere Regional Weather Model. The WRF model, 
developed by the National Center for Atmospheric Research, is a fully 
compressible, nonhydrostatic, mesoscale model that has been widely used for 
regional climate studies41–45. The Advanced Research version of the WRF model 
(ARW, version 3.8.1) was used in this study. We coupled the Noah Land Surface 
Model into the WRF model to accurately represent interactions between the 
land surface and the lower atmosphere15,16. The mosaic approach was adopted 
in the Noah Land Surface Model to account for heterogeneities over sub-grid 
scales (Noah Mosaic17). Instead of using the dominant land use over the grid, the 
mosaic approach considers surface fluxes over N categories (N = 3) of land use 
type, with weightings based on fractional coverage. Sub-grid heterogeneity was 
of prime importance in the analyses as deforestation was rather sporadic over the 
regions studied and may not have changed the dominant land use type over the 
entire grid6.

All simulations in this study shared the same physical options (Supplementary 
Table 1). The Kain–Fritsch scheme46 was applied to simulate the effects of 
convective clouds at a sub-grid scale on the grid variables (for example, 
precipitation and temperature). The WRF single-moment 6-class microphysics 
scheme47 was used to simulate ice microphysical processes more realistically. 
Longwave radiation was simulated using the Rapid Radiative Transfer Model, in 
which longwave fluxes and heating are efficiently and accurately calculated via 
the correlated-k approach48. Shortwave radiation was simulated by the Dudhia 
scheme49, which accounted for the effects of terrain slope and shadowing on 
the surface solar flux. Land surface turbulent fluxes were simulated by a widely 
used framework based on the Monin–Obukhov similarity theory50. The Yonsei 
University planetary boundary layer scheme was used to parameterize the 
turbulent vertical fluxes of heat, constituents and momentum in the planetary 
boundary layer and throughout the atmosphere51.

Experimental design. We investigated the biophysical climate impacts of 
agriculturally driven forest loss over four tropical mountain regions that are 
undergoing rapid deforestation in the twenty-first century (that is, SE1, SE2, SA 
and AF). Our analyses were constrained to the tropical mountain regions because 
recent deforestation and agricultural expansion dominate in the tropics4,21 (Fig. 1).  
We designed two one-way nested domains with horizontal grid spacings of 25 
and 5 km, respectively (Supplementary Fig. 4). The simulations over the four 
study areas shared the same configurations except for the domain dimensions, as 
summarized in Supplementary Table 1. We used two reanalysis products (ERA519 
and FNL20) for initial and lateral conditions for the numerical simulations. To 
better isolate the signal of the deforestation-driven climate impacts, we simulated 
the climate during the local dry season when the climate noise caused by external 
forcing was small (that is, from 15 November to 28 February in the SE1, and from 
16 May to 31 August over the other three areas). We performed simulations for the 
year 2014 over the four study areas and treated the first 16 d of each model run as 
spin up. Our results are based on the simulations from 1 December to 28 February 
for SE1, and from 1 June to 31 August for the other areas.

We implemented two sets of numerical experiments with contrasting land use 
and land cover. For the control experiments, we used the Moderate Resolution 
Imaging Spectroradiometer (MODIS) 30-s land cover product52 in both model 
domains to represent the current landscape features. MODIS 30-s provides global 
maps at 1-km spatial resolution of the Noah-modified 20-category International 
Geosphere–Biosphere Programme land cover classifications, the dominant 
land use category, 16-category top-layer soil type, the dominant soil category, 
topography height and sub-grid scale orography52. We used these static maps to 
represent the land cover for the year 2000. The 20 land use categories comprise 
evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf forest, 
deciduous broadleaf forest, mixed forests, closed shrublands, open shrublands, 
woody savannas, savannas, grasslands, permanent wetlands, croplands, urban 
and built up, cropland/natural vegetation mosaic, snow and ice, barren or sparsely 
vegetated, water, wooded tundra, mixed tundra and barren tundra. Values of 
parameters describing land surface characteristics (for example, albedo, emissivity, 
fractional vegetative cover, leaf area index (LAI) and surface roughness) were 
determined for the categories of land use type in each grid point as a function of 
the land use category via the default lookup tables (for example, GENPARM.TBL, 
MPTABLE.TBL, VEGPARM.TBL and SOILPARM.TBL). LAI parameters were 
updated for the tropical ecosystems using the MODIS Terra and Aqua combined 
LAI product53 (Supplementary Table 2).

For other (simulated) experiments, land use over the inner domain was 
replaced with a modified land use dataset to allow the difference between the 
simulated and control to accurately represent the forest loss during 2000–2014 
in the study regions. Most satellite-based products of land cover change, such 
as the European Space Agency Climate Change Initiative54, GlobeLand30 (from 
the National Geomatics Center of China)55 and MCD12Q1 (from the National 
Aeronautics and Space Administration of the United States)56, failed to capture 
the large-scale forest loss in Southeast Asia during the early twenty-first century4. 
Therefore, we did not directly use the land cover maps in 2014 from these 
products. Instead, we superimposed the forest cover change of the high-resolution 
global maps of twenty-first-century forest cover (hereafter referred to as 

HANSEN3) between 2000 and 2014 onto the original MODIS 30-s land cover 
product; the modified maps represent the land cover for 2014. According to the 
validation work based on FAO statistics, LiDAR detection and other satellite 
measurements, the HANSEN product shows an overall accuracy greater than 99% 
at the global scale3. In previous work4, we validated the accuracy of HANSEN 
forest loss pixels for the lowlands and uplands in Southeast Asia using the latest 
high-resolution satellite imagery (for example, RapidEye (5 m), Doves (3 m), 
EarlyBird-1 (0.8–3.0 m), IKONOS (3.2 m), QuickBird (0.6–2.4 m), Pleiades-1A 
(0.5–2.0 m) and Pleiades-1B (0.5–2.0 m)), further strengthening the accuracy 
assessment of the HANSEN dataset.

To generate the modified land use map for 2014, we first aggregated the 
HANSEN-derived net forest change (that is, gain minus loss) at 30-m resolution 
into total forest cover change for each 5 km × 5 km grid cell. The total forest cover 
change was then converted to the percentage forest cover change based on the 
land area of each 5 km × 5 km grid cell. In the lowland areas in tropical regions, 
irrigation allowed for intensive year-round cropping, while the rain-fed, highland 
croplands could not be grown throughout an entire year and had minimal surface 
vegetation during the dry season (for example, Supplementary Fig. 3). The 
elevation threshold of lowland and highland cropland was around 300 m (refs. 4,18).  
Therefore, the HANSEN-derived forest cover changes during 2000–2014 were 
superimposed onto the original MODIS 30-s land cover product to represent the 
satellite-observed deforestation, in which we increased the percentage of cropland 
(bare ground) in lowland (highland) accordingly. If there was net forest loss in 
the grid cell, we decreased the percentages of forest-type categories of land use 
proportionally (that is, evergreen needleleaf forest, evergreen broadleaf forest, 
deciduous needleleaf forest, deciduous broadleaf forest and mixed forests), and we 
increased the percentage of croplands if the elevation was lower than 300 m, or that 
of bare ground (that is, barren or sparsely vegetated ground) if the elevation was 
higher than 300 m. Inversely, if there was net forest gain in the grid cell, we then 
proportionally increased the percentages of forest-type categories of land use and 
proportionally decreased the percentages of non-forest-type categories of land use 
(excluding water, wooded tundra, mixed tundra and barren tundra).

The two sets of experiments (control and simulated) used the same model 
configurations as introduced above but were driven by the lower boundary 
conditions with and without the satellite-observed forest loss. Thus, the differences 
between the simulated and control experiments were used to elucidate the 
biophysical climate impacts of mountain deforestation over the four tropical regions.

Model performance. After using the first 16 d of each model run as spin up time, 
the remaining periods (that is, 1 December 2014 to 28 February 2015 in SE1 and 
1 June to 31 August 2014 over the other three areas) were used for validation and 
analyses. The model performance was first evaluated by comparing the simulated 
experiments with the surface air temperature from in situ weather stations in 
the four tropical mountainous areas (download on 15 April 2020 from ftp://ftp.
ncdc.noaa.gov/pub/data/gsod). There were 125 Global Surface Summary of the 
Day (GSOD) ground-observed weather stations in SE1, while the stations were 
relatively sparse over the other three mountain regions (30, five and nine stations 
in total for SE2, SA and AF, respectively). It is noteworthy that the density and 
quality of ground observations may have added uncertainties to the results of 
model validations. For SE1 and SE2 in Southeast Asia, we also evaluated the model 
performance using a gridded surface air temperature dataset reconstructed from a 
dense network of daily gauge data around Asia (APHRODITE)57.

In SE1, 40 of the 125 GSOD stations (32%) were located in the highlands 
(Supplementary Fig. 5b); this proportion was in line with the overall ratio of 
highland areas (41%; Supplementary Fig. 1). The model accurately simulated the 
spatial–temporal variability of mean daily surface air temperature (Supplementary 
Fig. 5). Compared with the ground-observed 2-m air temperature records from 125 
weather stations (dots in the inset plot of Supplementary Fig. 5b), the WRF–Noah 
model accurately simulated the spatial–temporal variability of near-surface air 
temperature in the study region, regardless of which reanalysis product was used 
for initial and lateral boundary conditions (temporal variability: R > 0.96; P < 0.01 
(Supplementary Fig. 5a); spatial variability: R > 0.93; P < 0.01 (Supplementary 
Fig. 5b)). The dynamic downscaling of reanalysis by the WRF–Noah model was 
almost as accurate as the APHRODITE product (green line in Supplementary 
Fig. 5a). In the other three tropical mountain regions, the model also generally 
captured the temporal variability of mean daily surface air temperature (R = 0.83, 
0.72 and 0.66 for SE2, SA and AF, respectively; P < 0.01; Supplementary Fig. 6). 
Besides, our simulations provided finer spatial information in mountain regions 
(Supplementary Figs. 7 and 8). Because of the similarity of the results driven by 
the two sets of initial and lateral boundary conditions, we report the results of 
the simulations driven by the ERA5 lateral boundary conditions, and use the 
simulations driven by FNL as a test for robustness.

Calculation of TE. As surface air temperature alone does not capture the change of 
heat content in the atmosphere, we calculated TE, which represents the surface air 
moist enthalpy and contains both dry and moist heat content58. In each grid cell, 
the daily TE (in °C) is given by:

TE ¼ T þ TM ð1Þ
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where T is the simulated daily mean air temperature (°C) and TM is the moisture 
heat content, which is given by:

TM ¼ λq=Cp ¼ 1000 ´ ð2:501� 0:002361TÞq=Cp ð2Þ

where λ is the latent heat of vapourization (MJ kg−1), q is the simulated daily mean 
specific humidity (kg kg−1) and Cp (=1.013 kJ kg−1 °C−1) is the specific heat at 
constant pressure for air.

Data availability
Data on satellite-observed high-resolution forest cover change in the twenty-first 
century are available at http://earthenginepartners.appspot.com/science-
2013-global-forest. GSOD surface air temperature data are available at ftp://ftp.
ncdc.noaa.gov/pub/data/gsod. The ERA5 reanalysis product is available at https://
cds.climate.copernicus.eu/. The FNL reanalysis product is available at https://rda.
ucar.edu/datasets/ds083.2. All of the datasets are also available on request from Z.Z.

Code availability
We used the programmes MATLAB (R2014a) and ArcGIS (10.4) to generate 
all of the results. Analysis scripts are available at https://doi.org/10.6084/
m9.figshare.13280150.
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