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A B S T R A C T

Collecting high-frequency social-environmental data about farming practices in sub-Saharan Africa can provide
new insight into environmental changes that farmers face and how they respond within smallholder agro-eco-
systems. Traditional data collection methods such as agricultural censuses are costly and not useful for under-
standing intra-annual and real-time decisions. Short-message service (SMS) has the potential to transform the
nature of data collection in coupled social-ecological systems. We present a system for collecting, managing, and
synthesizing weekly data from farmers, including data infrastructure for management of big and heterogeneous
datasets; probabilistic data quality assessment tools; and visualization and analysis tools such as mapping and
regression techniques. We discuss limitations of collecting social-environmental data via SMS and data in-
tegration challenges that arise when linking these data with other social and environmental data. In combination
with high-frequency environmental data, such data will help ameliorate issues of scale mismatch and build
resilience in environmental systems.

1. Introduction

Smallholder farmers provide up to 80% of the food supply in Asia
and sub-Saharan Africa (SSA) (FAO, 2013), and small farms (i.e., less
than two hectares) operate about 12% of agricultural land in the world
(Lowder et al., 2016). These farmers live in an uncertain environment
where climate variability is tightly related to the potential for agri-
cultural decisions to ensure food security (Kotir, 2011; Mendelsohn,
2008). Achieving food security means understanding, among other
things, the ways in which these farmers make agricultural decisions and
adapt to environmental shocks (Burnham and Ma, 2016; Harmer and

Rahman, 2014). However, researchers' and other stakeholders’ ability
to meet these objectives continues to be hampered by not only a lack of
consistent, quality data about farming households (Carletto et al.,
2013), but also by a disconnect between such socio-economic data and
climatic data, and the fact that these data are generally collected at
temporally coarse scales that are mismatched with the processes being
investigated (Cumming et al., 2006). Many agricultural decisions such
as when to plant, fertilize, and harvest are tightly linked to weather
patterns. For example, for the majority of farmers in Sub-Saharan
Africa, who are smallholders lacking access to irrigation (Burney et al.,
2013; Debats et al., 2016), optimal planting dates tend to fall at the
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start of the rainy season. If the start of the rainy season is delayed or is
rendered unclear by intermittent rains or storms, the risk of losing a
crop to early-season floods, or of planting too early, increases sig-
nificantly. Farmers must cope with both sudden weather events that
have immediate impacts on crops, as well as learn to adapt to changing
weather over many agricultural seasons.

Typically, annual, national-level agricultural censuses take the form
of crop forecast and post-harvest surveys. Such surveys have been used
to assess food security of smallholder farmers and to collect data about
farmer management practices, such as planting dates, area planted, and
total harvest quantities. However, these surveys suffer from recall bias
(Arthi et al., 2018; Beegle et al., 2012; Tourangeau et al., 2000), are
expensive to administer, and typically do not integrate climate or
spatial data. As Carletto et al. (2013) note (specifically for Africa),
agricultural data quality can also be impacted by questionable data
collection standards, reliance on improperly drawn or incomplete
samples, and inconsistency within measured variables over time or
between measures collected in different locations.

An additional problem posed by relying on traditional survey-based
methods is that such infrequent, cross-sectional data do not capture at
all, or capture inadequately, many intra-annual activities and decisions
(Arthi et al., 2018; Bell et al., 2019). Traditional survey data are col-
lected at a single point in time from a cross-section of respondents who
are chosen to be representative of a larger population. Sequential cross-
sectional surveys can be combined to form a panel, which can be used
to understand changes in practices or behavior over time. Time inter-
vals range from relatively brief periods in the case of, for example, a
treatment or experiment, to years apart, for example, in longitudinal
health studies. When the topics of interest are farming and food se-
curity, where individuals make multiple choices each week or each
month about how to manage their crops and provide adequate nutrition
for their households, these traditional methods do not provide enough
context and information.

Social-environmental data collection via mobile phones looks to be
one of the more promising avenues for reaching many people with high-
frequency data collection where remoteness poses obstacles to frequent
in-person interviews. We organize the opportunity for mobile-phone
data collection (MPDC) into the following key domains: 1) MPDC en-
ables collection of high-frequency social data to better understand
intra-annual dynamics and decision-making, 2) MPDC allows data to be
collected in near-real time which can enable faster response to en-
vironmental shocks and disturbances, 3) MPDC reduces the cost of
collecting data over large spatial extents and for large populations by
removing dependence upon personnel and hardware resources, 4)
MPDC imposes less of a burden on respondents because it is adminis-
tered via a tool used in daily life.

Rates of mobile phone ownership in SSA are growing rapidly. As of
2016, there were nearly 75 mobile cellular subscriptions per 100 people
in SSA (The World Bank, 2016). Pew Research Center found that, for
countries they surveyed in Africa, 75% of adults owned a cell phone,
which they used most commonly for sending text messages (Short
Message Service, or SMS) (Pew Research Center, 2015). A report by
Ericsson in 2014 predicted a doubling of voice call traffic and 30 mil-
lion mobile subscriptions across sub-Saharan Africa by 2019 (Ericsson,
2014). Alongside the increasing penetration of cell phones, research has
shown a correlation between cell phone usage and livelihood gains: for
example, cell phone access has helped improve farmers’ agricultural
outcomes (Aker and Ksoll, 2016).

Several recent studies have shown the feasibility of MPDC for high-
frequency data collection, in SSA and elsewhere (e.g., Bell et al., 2016;
Hoogeveen et al., 2014; Garlick et al., 2016; Leo et al., 2015). Rather
than focusing on SMS explicitly, these studies compare various phone-
based survey modes, including interactions with a human or a com-
puterized agent (e.g., via interactive voice response (IVR) or un-
structured supplementary survey data (USSD) protocols). One well-
known exception is the World Food Programme's (WFP) mobile

Vulnerability Analysis Mapping (mVAM) program, which tracks food
security and vulnerability in the developing world (Bauer et al., 2013;
Mock et al., 2016; Morrow et al., 2016). mVAM utilizes multiple modes
for data collection, including SMS, and integrates some spatial data
variables, including country and administrative units such as camps and
villages within each country. More often, SMS technology has been
used in SSA for health-related monitoring and information sharing.
These efforts include disease surveillance and morbidity estimation
(Cinnamon et al., 2016; Mwingira et al., 2017), health quizzes (de
Lepper et al., 2013), information-based interventions (de Tolly et al.,
2012), or pushing health-related reminders to individuals (Pop-Eleches
et al., 2011).

More recently, researchers have used other technology to help
gather high-frequency social or behavior data related to the environ-
ment. These efforts include using smart meters to measure water use
and quantity (Horsburgh et al., 2017) and energy use (Raimi and
Carrico, 2016). Researchers have also harnessed the power of crowd-
sourcing data to ameliorate coarse or missing datasets, for example, to
create gap-free, daily snow cover maps (Kadlec and Ames, 2017) and
improve land cover information (Fritz et al., 2012; Estes et al., 2016).
Yu et al. (2017) developed a smartphone application to collect geo-
tagged agricultural land system information from citizens, thereby al-
lowing for improved understanding of changes in agricultural land
systems.

The objectives of this study are to (1) describe a software and data
infrastructure for MPDC of social and environmental dynamics in
smallholder agroecosystems; (2) organize and evaluate a classification
of data types that can be effectively collected via SMS; (3) outline
challenges and limitations of MPDC for social-environmental systems
analysis, in terms of both our data collection process and the data
themselves, including data quality assessment; and to (4) illustrate the
power and value of SMS-based social-environmental monitoring. We
present this work within the context of ongoing surveys of smallholder
farmers in Zambia and Kenya, with a focus on data from Zambia. Our
findings contribute to the development of a set of best practices for
implementing large-scale surveys using mass, mobile communication
technologies, and can be used by other research groups to work toward
building their own projects in places such as SSA.

2. Data collection methods and infrastructure for high-frequency
social data

2.1. Study context

Zambia has a humid, subtropical climate, with annual rainfall ran-
ging from 500 to 1400 mm. The entire country, however, is vulnerable
to drought and dry spells (Estes et al., 2014). The country experiences
one major rainy season, with the onset of rains and maize planting
typically occurring in October or November. However, farmers’ per-
ceptions are that rainy season onset is occurring increasingly later in
the year (see Fig. 1) (Waldman et al., 2019). Maize harvesting takes
place in May and June, depending on factors such as the planting date,
maize variety, moisture of the crop, and presence of pests.

Our research team has been conducting surveys via SMS with
farmers in Zambia since late 2013, and as of March 2018, just under
800 farmer households were enrolled in the SMS survey program in
Zambia. SMS program households in Zambia are located across eight
provinces, with a denser concentration around the city of Choma. Fig. 2
shows the location of households enrolled in the SMS survey program in
Zambia.

Farmers were recruited into our SMS survey system through two
methods. Our initial recruitment enrolled farmers who were inter-
viewed as part of a large-scale extensive in-person survey conducted in
2015, 2016 and 2017. The sampling design of this survey involved 40
market nodes around which a spatially stratified random sample of 30
households were surveyed. Market nodes were selected based on
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identification of major market locations within a set of districts re-
presenting different agroecological zones in the country. Districts con-
stitute level 2 in the United Nations administrative boundary system
(Provinces are Level 1). Four markets were identified in each of 10
districts and in most cases, this constituted all the daily markets within
a district. Households were selected by sampling along a series of roads
(or transects) emanating from the market node. In cases where the
household settlement pattern around the market node was not uniform,
oversampling in populated areas was used. The result was a spatial
cloud of households concentrated around each market node location
where the size of the cloud varied as a function of population density,
but a majority of households were located within 10 km of the market
node location. The total sample population was approximately 1200
households in 2015. A larger number of market nodes were selected as
focal sample points in the Southern Province so that analyses requiring
high sample density (i.e. heterogeneity of perceptions of rainfall within
5 km × 5 km grid cells) was possible. At the end of this in-person
household survey documenting the demographic structure of the
household, labor and farming practices, and perceptions of climate
change, we asked farmers if they owned a mobile phone and were
willing to participate in weekly SMS data collection. In 2015, we en-
rolled about 760 farmers in the SMS survey program, 310 farmers in

2016, and 230 farmers in 2017.
Our second recruitment method was through village focus groups

composed of one-third farmers with < 0.5 ha in land holdings, one-
third female-headed households, and one-third farmers from the village
selected by village leaders and agricultural extension agents. The first
two groups we intentionally recruited because of the potential for
samples drawn with input from village leaders to undersample those
two important groups. We then trained all of these respondents to use
their phones to participate in the program and we chose a subset of
them to participate in an annual household survey. In addition, farmers
who were not responding to surveys were periodically purged from the
sample, as were any farmers who requested to be removed from the
program.

We use TextIt (https://textit.in/), a low-cost messaging platform
that allows users to create SMS or voice applications for data collection.
Survey question sets consist of 4–8 questions in English, designed to
take no longer than three minutes to answer. These question sets are
referred to as “flows,” and are built in TextIt and disseminated to
farmers each week. Farmers receive a series of questions related to what
time of year it is: planting, growing, harvesting, or interseason. Flows
can be constructed to include skip logic or branching depending on an
answer to a prior question, and can also shift from one flow to another.
For example, if a farmer responds that he or she has finished harvesting
all of his or her maize, he or she will automatically be switched to the
interseason flow. An Android smartphone maintained in Zambia runs
the TextIt application that is used to remotely send and receive the
questions and answers. Over time, some questions have been adjusted
slightly for clarity, or alternated with others as the research program
has progressed. Farmers receive a small payment to compensate them
for participating in the survey each week in the form of talk time (value
approximately $0.20 USD), which is provided directly to their phones.

Each week a portion of the sample responds, with some farmers
responding regularly and other farmers responding sporadically. The
overall response rate therefore varies, as does the weekly overlap be-
tween respondents as farmers drop in and out of the response pool.
Thus, unlike traditional survey data, panel data, or even data coming
from meteorological stations, which are structured and lend themselves
well to organization and retrieval with relational databases, data from
SMS-based surveys are characterized by a highly variable structure and
frequent missing values.

2.2. Broader data infrastructure

While the TextIt platform provides tools for low-cost and relatively
easy data collection, its functionality does not adequately support
analysis, replication, and preservation of data that are crucial for sci-
entific research (National Science Foundation, 2007). With rapid, fre-
quent data collection, manual methods and limited automation pro-
vided by data collection platforms is slow, cumbersome, and prone to
errors, duplications, and fragmentation. To realize opportunities that
are emerging from collecting new forms of data such as those discussed
in this paper, we established and implemented the following principles
in our approach to data infrastructure:

• Unified storage. A unified database allows us to store large
amounts of data in one place, easily manage updates, additions, and
cleaning, increase accuracy and security, and establish links to other
datasets for more complicated analyses.

• Preservation and replication. Downloading and storing data on
the servers managed by the project team provide additional backup
and security. If the cloud platform becomes corrupt or unavailable,
the risk of losing data is minimized as data can be easily restored
from the database, which also has a backup copy.

• Improved querying and retrieval capabilities. A database allows
data to be organized according to research needs, i.e., in anticipa-
tion of the most common queries. It also allows the addition of more

Fig. 1. Density plots showing percent of farmers answering which week they
estimated the rainy season began for each of a number of seasons. During in-
person household interviews (not via SMS), we asked farmers (N = 1021–1177)
across six provinces in Zambia (Central, Copperbelt, Eastern, Northern,
Northwestern, Southern; results presented here are pooled across provinces): To
the best of your memory, when did the rains begin in the 2015–2016 season?
2014–2015? 2013–2014? 2012–2013? About ten years ago?

Fig. 2. Location of enrolled households.
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metadata to enable filtering and subsetting of data for various types
of analysis.

2.3. Data pipeline

The data infrastructure we developed will also facilitate long-term
curation and management of these data. While data analysis techniques
are at the core of many discussions on climate variability and food
security, reliable data use depends equally, if not more, on what hap-
pens before and after the analysis. In our research, we incorporate the
concepts of data lifecycle and data pipeline to take better care of data and
to work with big and heterogeneous data (Plale and Kouper, 2017). A
fully developed infrastructure supports data throughout its lifecycle,
from collection to sharing and re-use. Viewing data through the lens of
the lifecycle framework helps to maximize the benefit of data, minimize
its cost, and improve data quality. The data pipeline is an abstraction
that describes software tools and services that are applied to data ob-
jects as they go through the lifecycle.

Our data preservation and analysis pipeline combines our own in-
novative methods of ingesting, processing, and visualizing the data with
the existing solutions for storage. This pipeline allows us to auto-
matically direct data from its cloud collection to locations of storage
and processing (Fig. 3).

The pipeline consists of Java and shell scripts developed by our
team (TextIt Ingestor, n.d.) and is organized into modules within the
data layer and a noSQL store that comprises the storage layer. We use
TextIt's RESTful JSON API that has endpoints to perform bulk opera-
tions on contacts, runs, flows, and events (see https://textit.in/api/v2/
). The data layer includes the ingestor, pre-processing, backend API,
and user interface modules. The module “TextIt Data Ingestor” runs in
intervals that can be defined in a configuration file. As flows are sent
out at different times for Zambia and Kenya, we schedule retrievals
accordingly – on Mondays at 7 a.m. local time (11 a.m. GMT) to collect
Zambia data and on Saturdays at 2 a.m. local time (6 a.m. GMT) to
collect Kenya data. The module retrieves available data for the last
week from TextIt and saves it on disk (File System) as multiple JSON
files. The pre-processing module performs several checks: it makes sure
each file was retrieved correctly, removes duplicates, and merges
multiple files that belong to one flow.

The pre-processing module also contains scripts for metadata
management. As the TextIt platform provides a limited number of
metadata fields that can be added to describe flows and contacts, we
developed tools to add additional metadata to flows and contacts. The
tools allow us to pull information from the database, add additional
values through automatic population of the fields or manual edits via a
website, and write to the database again. The following metadata
variables are added to flows: flow type (test/regular), season (planting,
growing, harvest, interseason), country (Zambia or Kenya), creator, run
start date, run end date. Contact information is enhanced with “Date
last responded” information to provide summaries of non-responsive
contacts over time.

2.4. Database solutions

The data from the disk are then inserted into a noSQL database. We
use the open-source solution MongoDB as a noSQL Store. This part of
the storage layer is designed as three databases per country that store
raw, processed (split), and integrated documents (Fig. 4).

In addition to being open-source, MongoDB offers benefits as a
noSQL solution:

• Conformity to the native data collection format. Many current
data collection platforms, including TextIt, store data in a docu-
ment-oriented format using JSON (or other) encoding. Documents
are not required to adhere to a standardized structure, i.e., they may
have different sections or fields. Preserving data in a raw JSON
format allows us to maintain a link between our storage and TextIt.
For example, in the case of data corruption, selected documents can
be uploaded back to the TextIt platform.

• Flexibility in structure. As described above, flows change from
season to season and sometimes questions are modified. Therefore,
we cannot expect the survey data to have a fixed schema and design
a relational database. While the data could have been transformed
from JSON to a relational database, having flexibility in structure
allows us to accommodate changes in questions and survey struc-
tures over time without compromising previous data or requiring
change in the database design. Data storage is being separated from
the application (research design and implementation) logic.

• Big data management. As the amount of data collected will grow
tremendously over time, we need a solution that allows us to
manage data efficiently. NoSQL databases are known to be highly
scalable for managing “big data” in a distributed environment,
without compromising performance (Nayak et al., 2013).

A raw database saves data as they come from TextIt in JSON format.
This is storage for preservation. The split database allows us to save
data in a more logical and structured manner and avoid arbitrary par-
titions of data done by TextIt, such as 250 responses per file for each
week that are embedded within a flow with its metadata. We extract
runs (responses) from each file and organize the database into three
logically consistent collections: (1) contacts, which contains information
about respondents, (2) flows, which contains information about each
survey, and (3) runs, which contains information about each response
within the survey. Such structure also helps with efficiency in queries.
See Fig. 5 for the schema of the split database.

In addition to the contact, flow, and run data, this database also
contains information about the status of data retrieval from the TextIt
API, which is subsequently used in monitoring both the data and the
server's health and completeness.

The integrated database consists of data that was converted into a
form suitable for further analysis; that is, all responses per contact are
gathered together and reformatted into a flat row-column representa-
tion rather than a hierarchical key-value pair representation. Such
preprocessing minimizes repeated calculation overhead when the da-
tabase is queried multiple times with different requests. Essentially, this
third database is designed to accommodate the most frequent queriesFig. 3. Data preservation and analysis pipeline.

Fig. 4. Database design.
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that researchers use on the database.
The backend API module exposes data from MongoDB to the front-

end services so that data can be displayed and explored on a website or
downloaded for further cleaning and analysis. The backend API is an
additional layer that provides standardized access to data and at the
same time prevents direct manipulation within the database. This
module can be further expanded with services that facilitate compu-
tational analysis, modeling, and visualizations.

Metadata management, data monitoring, and data exploration can
also be done through our user interface. A website has been developed
that can serve data out of the databases and present various data pro-
ducts to stakeholders. Currently, the user interface provides access to
flow and run completion rates as well as to summary statistics of re-
spondents (Fig. 6).

2.5. Automated cleaning

Data cleaning and analysis are currently done outside of the auto-
mated pipeline, using such tools as Open Refine for cleaning and R,
SPSS, ArcGIS, and Tableau for analysis and visualizations. Open Refine
(http://openrefine.org/) is a visual open-source tool for cleaning and
transforming messy data. It allows for data exploration, identifying
outliers and potential errors, normalizing spelling, and correcting typos
and mistakes. In Fig. 7, for example, we show how Open Refine helps to
identify similar answers with different spellings (e.g., FIVE/Five) and
bring them to the same standard form or to change them from text to

numerical form.
Once the similar values are clustered and their correctness is ver-

ified, a standardized new value can replace all other values. However,
because respondents are allowed to answer any question with open text
(rather than selecting from closed-ended response options), we must
take further steps to clean the data and attempt to salvage as many valid
responses as possible. Our team is currently in the process of system-
atically implementing more intelligent methods of cleaning using syn-
tactic similarities in values. In the absence of these more intelligent
methods, our research team has a choice to either forgo data that
cannot be cleaned using the methods we already employ, or clean the
unique answers manually.

3. Data types

As described earlier, we survey farmers throughout the year, asking
questions about planting, growing, and harvesting maize, in addition to
questions outside of the maize season. We organize our questions into
three categories: spatio-environmental survey questions, temporally
linked questions, and event-based questions. Thinking about questions
in different ways matters; a question that has less to do with the
farmer's personal characteristics or farming practices and is instead
related to the physical environment around the farmer (e.g., Did it rain
on your fields in the last 7 days?) presents different data challenges and
analysis opportunities than an event-based question related to the
timing of certain crop management practices. A sample of questions we

Fig. 5. Split database schema.

Fig. 6. Web-based dashboard for data monitoring and exploration.
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have asked farmers regularly is provided in Appendix A. In this section
we use four questions from the project to describe this typology. The
question texts and administration timeframes are provided in Table 1.
In section 4 of the paper (Data quality and usability), we reference a
sample of the list of questions in Appendix A to illustrate data quality
issues. Finally, in section 5 (Multi-temporal analysis and visualization
of high-frequency data), we also discuss the questions presented in
Table 1.

3.1. Spatio-environmental questions

We consider spatio-environmental questions to be those that ask
farmers about their immediate environment and are not dependent on
responses either to other questions we ask or to having answered the
same question in prior weeks. The Rain question is of particular interest
because of its potential to serve as an alternative to meteorological data
in remote areas, or to be combined with satellite-based precipitation
data to capture finer scale dynamics. The data from this question,
coupled with mobile meteorological stations that we continue to install
in the study areas, provide a more accurate representation of micro-
climatic variation in rainfall than the few meteorological stations that
are spread across the country. The Rain question is less sensitive to the
issue of different respondents dropping in and out each week than
questions that ask directly about farmer behavior, because the quantity
we seek to calculate from the answers is not affected by values given in
prior weeks (unlike planting or harvest questions). To ascertain whe-
ther it rained in a particular week in a given location, we can aggregate
farmers’ responses into grids and calculate the proportion of farmers
responding that week who answered “yes” to the Rain question. The
size of the grid cell chosen for this analysis is based on the desired
minimum average number of farmers responding per week per cell,
which is a function of enrolled farmer density and weekly response rate.

Although aggregation loses spatial precision, it removes dependence on
the response rate of individual farmers, while minimizing the noise
caused by incorrect responses or between-farmer differences in inter-
preting how much rain is enough to justify answering yes to the rainfall
question.

3.2. Temporally linked questions

Storage is an example of a question whose answer displays direct
temporal dependency. With Storage, we know when households are
harvesting their maize, and we know that maize storage declines over
time, thus we should expect to see such a pattern of decline over the
course of weeks. It could be fair to estimate that maize storage declines
linearly from the point of harvest, and therefore even if there are data
gaps for some weeks for some farmers, one could impute those missing
values. However, the rate of change week to week and month to month
in number of bags of maize in storage will differ from household to
household, depending on what time of the year it is, how many people
live in the household, how well off the household is in general, and
their maize availability, among other things. For example, households
may wish to sell some of their maize, which is one source of loss of
maize in storage. Some households must sell maize as soon as or even
before it is harvested, at lower prices to so-called “briefcase buyers”
(local, small-scale, private buyers who enter the market early and tend
to buy at lower prices), whereas those who are able to wait until later in
the season to sell will find larger private buyers or the Food Reserve
Agency (FRA), who generally offer higher prices. Thus, this type of
question is more sensitive to missing data from individual farmers.

3.3. Event-based questions

Event-based questions attempt to collect data on discrete events that

Fig. 7. Open Refine for data cleaning.

Table 1
Questions used as examples throughout the text.

Question label Question text Question type Administration time frame

Rain Did it rain on your fields in the last 7 days? spatio-environmental nearly every week during the period under consideration
Storage How many 50 kg bags of maize do you have in storage

now?
temporally linked every week during the period under consideration

Maize buying Did you buy any maize for your household usage this
week?

event-based harvest portion of the season and the period before the next growing season

Maize selling Did you sell any maize this week? event-based harvest portion of the season and the period before the next growing season
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are not spatially linked nor tied to prior responses to the question over
time. In our example, the events in question are buying and selling
maize, which we have structured into discrete events by asking about
these activities each week. Maize buying and Maize selling therefore re-
present the question type with the greatest potential for problematic
data gaps. If a household does not respond to a question like this for a
given week, we completely miss the reporting for that event, have little
recourse for recovering that information, and do not have a strong ra-
tionale for imputation. To fill in some of these data we may be able to
rely on recall data from the annual, in-person household surveys we
conduct, which include questions about buying and selling maize in the
three months prior to the survey. This covers a portion of the same time
period as that covered by the SMS questions, but not the entire period,
and the household survey data are less precise and more subject to
recall error. However, the household survey data are useful for char-
acterizing the relationship between other household-level variables and
the act of buying or selling maize.

4. Data quality and usability

4.1. Sample size and bias

One of the primary considerations for our research was to grow the
SMS survey program large enough to have a sufficient sample size for
understanding trends over time. Addressing this issue is to some degree
simple: the more respondents, the better. However, because the issue of
overall sample size is compounded by respondents’ inconsistent parti-
cipation, we find it instructive to examine what the data look like over a
range of sample sizes. To illustrate, we take the Rain question and plot
the trend over time for rainfall (i.e., the proportion of respondents
saying that it rained last week over the number of respondents replying
that week) at sample sizes of 10, 50, 100, 250, and 500 farmers to
visually show the range of observations that could have been observed
with a smaller number of farmers versus a larger number (Fig. 8). We
choose Rain as the example, but we could choose any question we ask
farmers to serve as the illustration for sample trends. A Monte Carlo

simulation was performed with the bootstrap method to first select n
farmers from the data, with replacement, and then calculate the pro-
portion that reported rainfall each week (noting that not all farmers
responded each week). The farmers were then resampled 10,000 times,
with the proportion reporting rainfall recalculated each time. The
variability of responses that could have been received is described by
calculating the 2.5th and 97.5th percentile of the estimated proportions
of rainfall each week (95% bootstrap confidence interval) and is re-
presented by the shaded grey region in Fig. 8. The five black trendlines
for each plot in Fig. 8 represent five individual draws out of the 10,000
simulations to show examples of the data that might have been ob-
served if we only sampled n farmers. Overall then, we get a good sense
of how smooth the dataset becomes as we approach a sample size of
500 or larger. Recall that our farmers are located across eight provinces
in Zambia, and we did not take geography into account in producing
these graphs, as they are meant to illustrate the methodological issue of
sample size. More substantive analyses would take geographic location
of households into account.

We recognize that our sampling design may be affected by some
degree of bias. Most obviously, we are missing farmers or farming
households who do not have cell phones, and we may miss some
farmers who are illiterate or who do not speak English. However, we try
to overcome the latter two limitations by ensuring that the farmers we
recruit have household members who are able to read English and are
willing to help the farmer respond to the survey.

We also performed a regression analysis to check for potential
nonresponse bias with the current sample in Zambia (results not
shown). We tested whether any of the following variables significantly
predicted the number of weeks responding to the SMS surveys for the
period from October 3, 2016 through July 10, 2017: age of household
head; sex of household head; number of people living in the household;
highest education level of anyone in the household; total area of
farming for the last growing season; maize plot size for the last growing
season; off-farm income; and a count of the number of food security
measures employed in the week prior (Coates et al., 2007). No variables
were significant in the model and R2 = 0.022.

Fig. 8. The five black lines in each plot represent five random simulations of the percentages that might have been observed with sample sizes of n = 10, 50, 100,
250, or 500 farmers. The shaded grey region represents the range of possible observations, based on 10,000 replicates of a Monte Carlo simulation (95% bootstrap
confidence interval). Data represent the proportion of farmers stating that it rained on their fields that week.
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4.2. Nonresponse

There is a potential tradeoff between data quality and the amount of
information that can be collected. Although it seems intuitive that the
longer a survey lasts, rates of survey attrition and satisficing would
increase, and the likelihood of participating in future surveys would
decrease, the little research that has been done on these issues has
mixed results (e.g., Bogen, 1996; Lynn, 2014). In our project, re-
spondents tend to drop in and out of the answer pool week to week.
That is, while we have a stable response rate that tends to range from
approximately 40-65%, virtually none of our farmers respond every
single week. This could be due to any number of factors, from tech-
nology infrastructure and hardware issues to respondents simply for-
getting. It is difficult to estimate to what degree the fact that we make a
weekly survey request accounts for respondents’ spottiness, and we do
not have follow-up, qualitative nonresponse data for Zambian farmers.
However, we do have such data for Kenyan farmers, which we collected
through follow-up phone calls with nonresponding farmers from Oc-
tober 2015 through April 2016. This survey provided enough data for
us to understand the main reasons for nonresponse, which we believe
are also likely to apply to Zambian farmers. Table 2 lists the fifteen
reasons we have coded based on the qualitative data. The top five
reasons for nonresponse over this period include the respondent for-
getting; being too busy; not receiving the SMS; the questions no longer
coming through mid-survey; and the lack of cellular network.

4.3. Usability

SMS-administered surveys pose unique challenges that must be
factored into the survey design and data analysis pipeline. Screen space
presents a particular consideration in terms of question wording, and
the fact that most farmers in SSA do not use smartphones (as opposed to
feature phones, or so-called “dumb” phones; Pew Research Center,
2018) limits choices for presenting questions (Callegaro et al., 2015).
Our questions require either yes/no (binary), numeric, or text re-
sponses. We provide no predetermined response options for selection.
We ask very few questions that require a text answer, and we have
found that answers to this type of question to be of lower quality for
analysis. For example, we have attempted to ask farmers what seed
varieties they have planted. Some farmers simply reply with the man-
ufacturer name such as “SeedCo,” others will only provide the variety
number “513,” while others will specify the manufacturer and the
variety name, “SeedCo 513.” Numeric answers fare better. These in-
clude questions such as “How many 50 kg bags of maize do you have in
storage now?” Binary questions, such as “Did it rain on your fields in
the last 7 days?” provide the cleanest data. We analyzed the proportion
of useable answers versus any answers provided for a subset of 12
questions. By “useable,” we mean responses that are not outside the
bounds of possible answers and are fully comprehensible. For example,

in response to a question such as “How many 50 kg bags of maize do
you have in storage now?” unusable answers include “depends,” “yes,”
“100,000,” and the like. We compared a set of seven yes/no questions
with five text or numeric type questions, over a period from November
2015 to February 2016, and found less data loss in terms of usability for
binary questions than for text or numeric (Fig. 9).

5. Multi-temporal analysis and visualization of high-frequency
data

In addition to challenges, the type of question asked presents di-
verse opportunities for recognizing patterns in the data and character-
izing trends over time. We focus again on four of our survey questions,
Rain, Storage, and Maize buying/Maize selling to illustrate the possibi-
lities for visualizing and analyzing such high-frequency data. We ex-
amine these questions over parts of the period from the weeks begin-
ning October 3, 2016 through October 30, 2017, which covers just over
one year, or one entire growing season, for Zambia.

5.1. Spatio-temporal data

As an example of data visualization for the Rain questions, we chose
five weeks of the study period to illustrate this data signal in the area
around the city of Choma. The upper left panel of Fig. 10 shows the
location within the country, and the other panels, taken together,
provide a snapshot of weekly rainfall events in this area between Oc-
tober 2016 and May 2017. Compared to precipitation data coming from
the nearest meteorological station in Mochipapa, which represents a
huge physical area in terms of meteorological data for the country, the
data from the Rain question show how much local variation there is in
the region (Fig. 11; Southern province only, the portion of the study
area associated with Mochipapa station). That is, at first glance it may
appear that farmers are reporting rain for the same periods as rainfall
recorded at the Mochipapa station, however, during the rainy season
(roughly November–March or April), heterogeneity in farmers’ re-
sponses allows us to identify drier or wetter spots. For example, for the
week of March 27, 2017, no rain was recorded at Mochipapa, but
around 60% of farmers reported that it rained that week, with drier
areas to the north and west of Choma.

As with the rainfall question, spatial aggregation also allows us to
extract useful information from the binary responses to the questions
related to weekly planting or harvesting events. These three variables–
spatially aggregated rainfall, planting, and harvest proportions, can
provide valuable information regarding crop management and how it
varies in response to regional variations in rainfall onset. This in turn
can be estimated by applying change point detection techniques (e.g. a
Pettit test; Pettit, 1979) to the gridded rainfall proportions, thereby

Table 2
All reasons coded for SMS nonresponse.

Respondent forgot
Battery/phone charging problems
Respondent too busy
Respondent didn't get SMS
Respondent didn't get talktime
Respondent sent texts from second SIM
Next question didn't come
Accidently deleted SMS
No network
Phone spoiled/can't type
Respondent was sick
Respondent did not have anyone to assist
Received 2 sets of questions
Respondent had traveled
Respondent had used talktime

Fig. 9. Data loss by question, expressed as the difference response rates be-
tween the rate adjusted for unusable data and the total rate.
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incorporating the fine spatial heterogeneity in rainfall that would be
masked if one were to rely on weather station data alone.

5.2. Temporally linked data

Maize storage in Zambia is crucial, ensuring some degree of food
security for smallholder households. With the Storage question, even a
single visualization of the average number of bags in storage for
households over time, broken into terciles (Fig. 12), is a powerful and
useful measure of general food security among households in the study
area. We first removed outlier responses for each week, calculated as
those falling outside the 1.5 interquartile range. The percent of outlier
responses each week ranged from zero, during a week with few re-
sponses, to 16.4, which was a week during the height of harvest season.
In Fig. 12, which shows the number of bags of maize households have in

storage on average each month over the period of decline during the
growing season, it is immediately apparent that some households are
far less secure than others, and because of the temporal nature of the
data, we can identify the period when storage reserves become criti-
cally low. Annual per capita maize consumption has been estimated at
anywhere between 105 kg and 175 kg (Hotz et al., 2011; Kumar 1994;
Prasanna, 2016, Shiferaw et al., 2011).

If we want to know more about the characteristics of households
that are more likely to be food insecure, we can look at the underlying
attributes of households at each food storage level, which are gathered
via an annual survey from a subset of households in the study area. We
have survey data for 340 households who answered the Storage ques-
tion and after removal of outliers still had responses for at least one
week over the period under consideration. One descriptive analytical
method to explore these data is a recursive partitioning technique

Fig. 10. Visualization of data from the Rain question over time. Panel 1 highlights the area visualized in panels 2-6, which depict data on reported rainfall for five
points in time between October 2016 and May 2017.

Fig. 11. Percent of households in Southern province reporting rainfall plotted against rainfall amounts from Mochipapa station data.
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known as a classification or regression tree (CART). This method helps
us explore the structure of the data and provides a visualization of the
decision rules used to predict, in this case, the categorical outcome of
food storage tercile. One may also, of course, use regression modeling
for these data, but our intent here is to show an additional example of
how to analyze and visualize these data. We use this method (R package
rpart: R Development Core Team, 2011; Therneau et al., 2012) to un-
derstand which variables might be most useful for predicting food
storage from among a set of possible pertinent variables from the
household survey: whether the household's primary language is Tonga
(the dominant ethnic group in this region); age of household head; sex
of household head; highest education level achieved by anyone living in
the household; number of people living in the household; the house-
hold's total maize plot area (ha); household's total off-farm income;
number of food security measures employed in the week prior (from the
Household Food Insecurity Access Scale, or HFIAS (Coates et al.,

2007)); did the household give away any maize from their harvest.
(Fig. 13). To interpret Fig. 13, for example, the node that is in the
lowest left of the figure can be understood first to mean that 36% of all
farmers (n = 122) have total maize plot area of less than 1.2 ha. Then,
of those 122, 52% did in fact fall in the lowest tercile of food storage,
30% were in the middle tercile, and 18% were in the highest. Thus,
based on maize plot size alone (< 1.2 ha), about half of the farmers
(52% of 122) would be correctly predicted to be in the lowest tercile
group.

5.3. Event-based data

One limitation with our SMS-administered data collection is the
impact that nonresponse has on event-based data. A typical household
may buy or sell maize 3 or 4 times/year. For a question like “Did you
sell any maize this week?” a missing response for a week when a
household sold maize may mean that the SMS-based data reporting
misses a major selling event. However, aggregation of data across a
population of households can still be used to portray the seasonality of
maize buying or selling through the year in a similar way as that de-
scribed with the precipitation reporting: missing data from some re-
spondents does not greatly impact the overall trend in the data pro-
vided there is a sufficient number of respondents in a particular week.
But if the objective is to use SMS-based data collection to document
what proportion of harvest a household buys or sells through the year, a
missed observation can lead to significant misrepresentation.

Households’ behavior in terms of maize selling and buying can be
affected by many factors. Households have more maize available to sell
after harvest, but they may retain a portion of harvest in hopes that
prices increase as available maize stocks become scarcer over time. A
household may also sell a large portion of harvest at one time in order
to acquire cash for unexpected life events like health-related expenses,
school fees, or purchases of farm equipment. However, this one-time
cash infusion may come at the expense of having to buy maize later in
the year to satisfy household food demand. We cannot infer these
household-level dynamics from the broad scale SMS data we gather on
maize selling and buying, but any buying or selling event with this kind
of temporal distribution (i.e., tied to maize farming cycles) will

Fig. 12. Average number of bags in storage for households over time, broken
into terciles, with indicators for the stages of the maize season and rainy season.
Households responded to the question, How many 50 kg bags of maize do you
have in storage now?.

Fig. 13. Classification tree for data from the Storage question. This tree was selected by pruning to a minimum bucket size of 15 farmers per node.
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demonstrate some patterns. We can better contextualize such patterns
given other macro-level data.

For example, our SMS data (Fig. 14) show the temporal frequency of
maize selling over the course of 24 weeks during and after harvest, from
the week of May 22, 2017 (maize marketing season begins in May)
through October 30, 2017. Looking at the trends, we might have ex-
pected to see a larger or more defined bump in selling around July,
when farmers have finished harvesting maize. Instead, we see that the
percentage of households selling maize ranges between about 12% and
26% across these months, with no very clear jump or fall in selling
activity. When we consider other data to help understand this pattern,
we see that prices for maize began to fall sharply and dramatically after
May 2017, back to the five-year average for 2011–2016 (FAO, 2018;
FEWS NET, 2017). A confluence of events across the 2015–2016 and
2016–2017 growing seasons led to this price drop (Chapoto et al.,
2017). In the 2015–2016 season, there was both an export ban on maize
and a favorable growing season that led to an excess of maize in storage
in the country for that year. Then, in the 2016–2017 growing season,
farmers experienced another good growing season and produced a
bumper harvest. Prices did not pick back up through at least October for
most of country (FEWS NET, 2017). Given this context, it is less sur-
prising to see the percent of households selling maize varying within
this range, with few distinct peaks or valleys in the trendline, because
the sudden price drop may have induced more farmers to hold on to
their maize to wait and see if prices improve. If we were to examine
other years of SMS data and compare patterns (data not shown), we
could extend our understanding of the patterns of temporality of maize
selling for farmers in Zambia.

The potential for missing event-based data also limits our ability to
compare households, but can be partly remedied by turning to other
data gathered via SMS in combination with our survey data. For ex-
ample, we asked about Maize buying because it is a coping mechanism
households might employ when their levels of maize in storage are
depleted or low. Because we also have data from the Storage question,
we can identify the period during which certain households find
themselves on the margins of food security and thus might be engaging
in buying maize to get through their leanest period. We can also
identify which households fall into the lowest tercile of food security,
and could link them with their responses to the Maize buying question to
see whether these households are employing this strategy. Further,
because we have survey data for a subset of the SMS participating
households, we are able to understand, albeit with less temporal pre-
cision, what other food-related coping mechanisms households used
during the year. The data from Maize buying give us an overall sense of
the periodicity and distribution of this event, while the survey data can
help us understand why a particular household might be buying maize.

Such frequent, event-based data are some of the most often missed
data in traditional household surveys, but as is evident, they remain
some of the most difficult to capture well. As our SMS survey program
continues, cellular infrastructure becomes more reliable, and we

improve our understanding of activities like maize buying and selling,
this high-frequency, event-based data collection work will become
more and more valuable.

6. Summary and conclusions

Noël and Cai (2017) noted that for models of coupled human and
natural systems, environmental models have become increasingly
complex as data improve and methods advance, while accurately
modeling human behavior within environmental systems remains elu-
sive. Bell et al. (2016) have recognized the need for intra-annual or
intra-seasonal social data to capture the complexity of change over time
and improve assessment and modeling. When attempting to track and
measure human activity and needs related to issues such as farming
practices and food security, more traditional methods of data collection
such as household surveys fail to capture short-term variability in en-
vironmental conditions and behavior (Bell et al., 2016). Further, the
temporal mismatch between annually collected household survey data
and higher frequency environmental data (e.g. weather) limit the po-
tential of both types of data. Harmonizing those temporal scales allows
us to answer questions that we otherwise are not able to address. For
example, if we were to only use an annual survey to ask about current
maize in storage, depending on when that survey is administered, there
could be little variability between households, which might lead us to
believe that households in the study area are similar in terms of food
security. However, when we examine food storage over the course of
the season as we have done here, we see much greater differences in
food security for households, which in turn is more meaningful if one
were to factor in other survey data, such as HFIAS scores.

We locate our research among work done by Bell et al. (2016), Bell
et al. (2019), who provided smartphones to rural Bangladeshis to col-
lect real-time survey data via a custom interface, and efforts by applied
researchers, such as those being undertaken by the WFP in their mVAM
program, which utilizes multiple mobile data collection modes to
monitor individuals’ current food security status in many places in the
world. Like these, we are collecting social data in real-time when we ask
farmers about activities like buying and selling maize. Unlike Bell et al.
(2016), Bell et al. (2019), we utilize existing data infrastructure in that
farmers we survey are using their own phones. We also integrate high-
frequency environmental data by asking farmers about rainfall and via
mobile meteorological stations we have set up in the study areas. The
environmental data we collect addresses gaps found in existing social-
environmental data in the area: our weekly question about rainfall,
linked to household location and then aggregated across provinces, is a
level of detail missing from precipitation data that are currently
available for SSA. As a result of all this, we see our work as integrative
across scientific disciplines and pertinent to sectors outside of aca-
demia.

There are two separate but related issues that our methods to col-
lect, manage, visualize, and synthesize the high-frequency data address.
The first is the need for improved agricultural statistics, especially
about farmers living in areas where funding, personnel, and infra-
structure present barriers to collecting and synthesizing agricultural
data. Carletto et al. (2015) note that improvements to methods for
collecting data about smallholders have been particularly slow. They
also highlight the need to harness technological advances to collect
such data more efficiently, and to better integrate agricultural data with
other types of data. We are working toward all three of these goals. The
second is the issue of scale mismatch. Scale mismatch occurs when the
scale of management and scale of ecosystem processes do not match,
leading to problems in the system in the institutions charged with
managing the system, or in the ecological systems themselves
(Cumming et al., 2006). Matched scales, however, are essential to
characterizing the resilience of a system and to the ability of those
within the system to successfully manage change. Both ecological and
social change contribute to scale mismatch, and improving ways to

Fig. 14. Percent of households reporting that they sold maize each week.

S.A. Giroux, et al. Environmental Modelling and Software 119 (2019) 57–69

67



measure and ameliorate scale mismatch is urgent, as poor socio-eco-
logical data can lead to poor policies, institutions, and management.
There is no clear path for fixing scale mismatches (Cumming et al.,
2013), but more closely matching the data in terms of temporal re-
solution will help. Our methods are specifically designed to address the
observational scale mismatch between annual surveys and farmer de-
cision-making processes. The high frequency with which we are col-
lecting these data can provide more detailed statistics, and temporal
data can be put in the context of larger forces. Our example of ex-
amining the SMS-gathered maize selling data in light of movement in
the market and growing conditions allows us to see how these outside
forces are affecting households over time.

Despite the potential of our approach to reduce scale mismatch in
the characterization of coupled socio-ecological systems by collecting
high-frequency data, bringing this data collection effort to scale is not
without its own hurdles. While it is far less expensive to capture these
data via SMS compared to in-person surveys, in terms of database in-
frastructure and cleaning steps, it is costly to prepare it for widespread
use. In addition, understanding the types of data gaps that are inherent

in high-frequency data and having ways to manage them are necessary
to use the data to their fullest potential. We have noted some of these
data gaps and presented ideas for addressing or rectifying them. As
cellular networks expand, more people acquire cell phones, and
smartphone use becomes more widespread, the opportunities for col-
lecting data with greater frequency will continue to improve, both in
terms of lowering the rates of technology-related nonresponse by those
living in less well-connected places, and in the ways we can utilize these
tools to expand and improve data collection. Building tools and
knowledge about the process of collecting high-frequency data now will
be invaluable as technology presents these new opportunities.
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Appendix A

These are questions asked of farmers in the SMS data collection program in Zambia. This is not an exhaustive list of all questions ever asked of
these farmers, because questions have evolved or been dropped over time depending on their performance and the research foci of team members.

Question Question nickname

Have you planted any maize in the last 7 days? maize planting
How many seed varieties did you plant? variety number
What is the first seed variety you planted? variety 1 of 2
How many kg of [that variety] did you plant? kg 1 of 2
What is the second seed variety you planted? variety 2 of 2
How many kg of [that variety] did you plant? kg 2 of 2
What seed variety did you plant? variety 1
How many kg of [that variety] did you plant? kg 1
How many 50 kg bags of maize do you have in storage now? storage
Are all of your maize fields planted now? planting complete
Did it rain on your fields in the last 7 days? rain
Did you weed your maize fields in the last two weeks? weeding
Did you apply fertilizer to your maize fields in the last two weeks? fertilizer
In the last two weeks, how many days did you work outside your farm for pay? piecework
At this point, how many 50 kg bags do you expect to harvest at the end of the season from all of your maize fields? expected harvest
How many hours did your household spend collecting water in the last 7 days? water collection
How many hours did your household spend collecting firewood in the last 7 days? firewood
Did your household use charcoal for cooking in the last 7 days? charcoal
Have you harvested any of your maize fields in the last 7 days? maize harvest
How many 50 kg bags of maize have you harvested from your maize fields in the last 7 days? 50 kg harvest
Have you harvested all of your maize fields? harvest complete
Did you buy any maize for your household usage this week? maize buying
How much maize did you purchase? maize purchased
Did you sell any maize this week? maize selling
How much maize did you sell? maize sold
In the past 14 days, did anyone give you maize so your household would have enough food? receive maize
In the past 14 days did you give maize or mealie meal to any neighbors to they would have enough food? give maize
In the past 14 days how many days did your household consume meat? meat
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