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a b s t r a c t

This paper presents a quantitative ecohydrological framework for predicting regional distribution pat-
terns of woody species in dryland ecosystems. The framework is based on an existing stochastic model
for the daily mass balance of water that represents the interactions between soils, climate, and vegeta-
tion. Individual species selection is based on an optimality trade-off hypothesis, which states that dryland
vegetation patterns are constrained by maximization of water use and simultaneous minimization of
water stress. The relative importance of water use and stress avoidance to the overall fitness of three Aca-
cia species is determined from the heterogeneous basin, the Upper Ewaso Ng’iro river basin, of the central
Kenya highlands. The model results indicate that overall fitness is more strongly influenced by water use
than stress avoidance but that consideration of both stress avoidance and water use is critical to predict-
ing basin-scale patterns of species distribution. We identify a linear trend in the frequency and intensity
of storms with the same annual total using a basin-wide gauge precipitation dataset. After calibration, we
apply the basin average linear trends in time for average rain per storm and storm arrival rates. The
model results indicate the upslope migration of two species, Acacia tortilis and Acacia xanthophloea to
areas with higher total rainfall. Lastly, we explore the modeled changes of species cover in the basin influ-
enced by changes in rainfall total holding growing season rainfall variability constant and changes in
growing season rainfall variability holding total rainfall constant. We find that changes in dryland species
distribution patterns and relative abundance may be as sensitive to growing season rainfall variability as
they are to changes in total rainfall amounts.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Drylands are extensive, covering 30% of the Earth’s land surface
and 50% of Africa [62,66]. Furthermore, dryland ecosystems sup-
port a large fraction of the human population and most pastoralist
societies [62]. Two challenges facing the sustainability of pastoral-
ist societies are land use and climate change [32]. Although
changes in land use are an important and a major concern, we fo-
cus our efforts on predicting natural ecosystem responses to cli-
mate change. In this study, we present a modeling framework for
addressing the impacts of rainfall on the distribution of woody
vegetation species. We apply our framework to an African dryland
watershed in central Kenya.

Prior studies demonstrate that dryland ecosystems are sensitive
to shifts in rainfall climatology [12,25,59,66,69,70]. Regional rain-
fall patterns are primarily governed by larger scale phenomena,
such as the Intertropical Convergence Zone (ITCZ), Hadley cells
[21], and global teleconnections [46]. Recent changes and pre-
ll rights reserved.
dicted future changes in rainfall patterns vary greatly around the
globe [32]. For example, in the southwest United States, rainstorms
have become more frequent but less intense, with decreasing
storm depths caused by changes in the Hadley cell over the Pacific
Ocean [21,28]. Using the observed changes in rainfall patterns,
climate model predictions indicate a decrease of 15% in water
availability (annual rainfall minus evapotranspiration) over the
next two to three decades [69]. Comparatively, rainstorms in
sub-Saharan Africa are predicted to become more intense and less
frequent [29]. Explanations for these changes include increases in
surface albedo and increases of dust particle concentrations and
drop nucleation [77]. Decreased infiltration and expansion of bare
soils, amplified by changes in the distribution of rainfall for sub-
Saharan Africa, will lead to greater runoff and decreased soil
moisture.

Dryland vegetation responds strongly and rapidly to changes in
soil moisture through shifts in stomatal conductance [33], and soil
moisture dynamics are governed by the daily arrival of storms and
the dynamics of plant water use between storm arrivals. Despite
the importance of daily rainfall processes in determining dryland
soil moisture and plant water use, a review of 41 recent models
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on arid and semi-arid grazing found only five models that included
daily rainfall as a forcing variable [72]. The vegetation response to
highly temporally variable rainfall pulses has been found to be
nonlinear [2,33] and temporal averaging can lead to erroneous
solutions of the vegetation response. Previous studies have found
daily rainfall to be well represented by stochastic processes
[33,59]. In addition to temporal variations, rainfall in many dryland
ecosystems is highly heterogeneous in space, which is caused by
the occurrence of localized convective storms [12].

Besides rainfall, the representation of vegetation needs to be
further refined. Although fractional woody cover is the most com-
mon description of dryland vegetation structure, the ubiquity of
water limitation indicates that differential water use across func-
tional groups or individual species may also be critical. Plant water
use is species-dependent [73], which suggests that differences in
dryland species composition can result in substantial differences
in basin water use [39,53]. Given the complexity of ecological
and environmental factors that together determine the spatial pat-
terns of species occurrence, a general framework for describing
factors that govern geographical patterns of species extent has
not yet been developed. However, the field of biogeography has ad-
dressed species distributions and local inter-species competition
using the niche concept [18,24,27,30]. Here, we adopt Hutchinson’s
definition, which defines a niche as the subset of environmental
conditions that affect a particular organism and determine its
absolute fitness [30,34]. We refer to fitness as the ability of an indi-
vidual to grow, reproduce, and survive and will provide a formal
definition later in the paper. Modeling of species distributions
using niche-based approaches has been primarily studied in two
ways. The first method uses correlation between abiotic drivers
(e.g. soil, temperature, rainfall) and species occurrence to statisti-
cally represent the niches in multidimensional space [3,50]. While
this method obtains satisfactory correlation with observed vegeta-
tion patterns, it fails to address specific causal mechanisms govern-
ing species distribution patterns. In addition, this framework is
difficult to extrapolate to novel groups of species [3,34]. The sec-
ond method adopts a mechanistic approach that describes plant
fitness, explicitly modeling growth, reproduction, and survival.
However, at regional and continental scales, these models require
many input parameters making them difficult to parameterize
[43,44,54].

This paper is motivated by a need to develop more detailed
frameworks of coupled water and vegetation systems in drylands
while avoiding overparameterization and model complexity in or-
der to address issues such as climate change. The two main chal-
lenges we address with our proposed framework are the
representation of rainfall as a daily stochastic process and the
refinement of fractional woody cover into predictions of the spatial
distribution of species.

In this work, we use a previously-developed stochastic soil
water balance model [35,36,55,58] to represent the interactions
between climate, soils, and plants. Such models have been used
on a precipitation gradient in the Kalahari desert [63–65,74–76],
the Upper Rio Salado basin of New Mexico [7], and a California
oak savanna [9]. The model is nonspatial and determines average,
steady-state growing season values of runoff, leakage, interception,
and evapotranspiration of a single species. We expand the model
into a spatial context by applying an optimality trade-off hypothe-
sis which states that dryland vegetation patterns are constrained
by maximization of water use and simultaneous minimization of
water stress [8]. The model is forced by daily rainfall, which is rep-
resented as a marked Poisson process described by the mean depth
of daily rainfall and the mean arrival rate of storms. For the basin
presented in this study, we generate spatial estimates of each
parameter and analyze temporal trends in the variables using a
long-term daily precipitation dataset. The stochastic soil water bal-
ance model is used to determine each component of a fitness vec-
tor for all species, where growth and reproduction are estimated as
the ratio of evapotranspiration to growing season rainfall, and
plant survival is estimated with the dynamic water stress over
the growing season. The contribution of each of these components
to overall plant fitness is unknown. The skill and accuracy of our
model results are tested against two separate model cases that rep-
resent the end members on a continuum of possible model skill
and accuracy. The lower bound case is described by selecting a spe-
cies at random. The upper bound case, a neural network, is a pow-
erful predictive model for linear and nonlinear data [26,37].

This research has three objectives. The first is to extend an
existing mechanistic approach in order to predict changes in the
distribution of woody plant species in a central Kenyan watershed
caused by specific climate change scenarios based on historical
rainfall observations. Our second objective is to predict changes
in species patterns and relative abundance in response to changes
in total growing season rainfall or changes in the variability of
growing season rainfall. Our third objective is to determine the rel-
ative importance of plant water use and plant water stress in
determining the overall distribution of three Acacia tree species,
Acacia drepanolobium, Acacia tortilis, and Acacia xanthophloea.

The remainder of the paper is organized as follows: first, in the
methods section, we describe our study site and key meteorologi-
cal data necessary to apply the stochastic water balance model. We
also introduce our modeling framework and calibration procedure
we use to apply the fitness vector framework we have adopted for
predicting individual species distributions. The methods section
ends with a brief examination of model sensitivity to key parame-
ters. Our results provide model predictions of species distribution
patterns based on observed trends in rainfall variability, as well
as the differing effects of changing either the mean or variability
of growing season rainfall. Our results conclude with an examina-
tion of our fitness vector framework’s performance as well as the
inferred relative importance of water use and water stress in gov-
erning species distribution within our study basin. We conclude
with a discussion section that explores the implications of our fit-
ness vector results, the potential for our approach to explain ob-
served shifts in dryland species composition, and a discussion of
model limitations and plans for future refinement.
2. Methods

2.1. Basin description

Our study basin is the Upper Ewaso Ng’iro river basin (15,200
km2), which is located in the central Kenya highlands. The basin
spans gradients of elevation, temperature, precipitation, and con-
tains eight different soil texture classes (Figs. 1 and 2). Because
the basin is located on the equator, the annual climate consists
of two rainy seasons caused by the Intertropical Convergence Zone
(ITCZ). Temperature and precipitation patterns are heavily influ-
enced by elevation (Figs. 2a and 4a). Soil texture ranges from san-
dy clay to clay soils (Fig. 2b, 1980 UNESCO Soil Map). The gradients
of temperature, precipitation and different soil texture classes lead
to a complex mosaic of vegetation species composition.

The Upper Ewaso Ng’iro river basin is a typical savanna ecosys-
tem with woody vegetation (mostly Acacia) and grasses (Fig. 2c). In
this analysis, we focus on the 60% of the basin dominated by three
Acacia species, A. drepanolobium, A. tortilis, and A. xanthophloea. We
have chosen to study these species because they represent a diver-
sity of water use strategies, and each occurs across a wide range of
the basin. Moreover, these species are described by prior studies,
so their water use characteristics are well-known. A. drepanolobium
is the dominant species on the black cotton clay soils and has been



Fig. 1. Location of the study area in the central Kenyan highlands. Mount Kenya (5199 m.a.s.l.) is located in lower right hand corner. The figure illustrates the steep elevation
gradient, Upper Ewaso Ng’iro river watershed boundary (15,200 km2) (red line), Laikipia District boundary (black line), Mukogodo Forest boundary (green line), and daily
precipitation gauges organized by record length. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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characterized as having a shallow wide spreading root system with
a tap root [14]. A. tortilis is a drought tolerant species and has a
deep tap root, lifting water hydraulically from deep sources [38].
The most geographically diverse species is A. xanthophloea, which
occurs in riparian, upland clays, and a few select dry sandy areas.
The remaining areas (�40%) of grass, shrubland, and woody vege-
tation are not included.
2.2. Basin rainfall dynamics

We examined the rainfall patterns in the Upper Ewaso Ng’iro
river basin using daily precipitation gauges with record lengths
of 5–75 yr (Fig. 1, data provided by NRM3 of Nanyuki, Kenya).
We analyzed the data for temporal trends in two parameters: the
average rain depth per storm, a (mm), and the average storm arri-
val rate, k (day�1), during each of the two rainy seasons (March–
May and October–December). Significant temporal trends of
increasing a and decreasing k (p < 0:05, Table 1) were found using
the Mann–Kendall statistical test [40].
While spatial variability in rainfall precludes any certain state-
ments regarding whole-basin trends, we use the Jacobson Farm
gauge, which had the longest record length at 75 yr (1934–2008),
to demonstrate the potential for shifts in rainfall processes to occur
in this region. Although total precipitation at the Jacobson Farm
gauge did not change significantly for either rainy season, increases
in a and decreases in k were both statistically significant (p < 0:05,
Fig. 3). A majority of the increasing trend in a and decreasing trend
in k can be attributed to the inter-annual variability in precipita-
tion between 1975 and 1990. The inter-annual variability observed
in the Jacobson Farm gauge is well within the recent historical
observations over East Africa [45], and greater variability in rainfall
has been documented in East Africa within the last two centuries
[47].

The ensemble of global climate change models (SRES A1B sce-
nario) predicts an increase of 0.5–0.6 mm day�1 by 2080–2099
compared to 1980–1999 for all of East Africa (Figs. 10–12 in
[41]). In addition, the ensemble of global climate change models
predicts an increase of 1.25–1.5 mm in the standard deviation of
inter-annual rainfall variability by 2080–2099 compared to



Fig. 2. The Upper Ewaso Ng’iro river basin is a heterogeneous landscape. (a) Driven
by the changes in elevation, there are steep gradients in mean annual precipitation
(MAP) and contours of the coefficient of variation of annual rainfall (mean divided
by standard deviation). (b) The study area contains a wide range of soil texture
classes from clay to sandy soils (data source 1980 UNESCO Soil Map). (c) The
ecosystem is a classical tree–grass savanna with a diversity of around 10 acacia tree
species, some dominant and others coexisting in areas (data source Mpala Research
Centre).

Table 1
Summary of basin rainfall statistics for gauges with daily record lengths greater than 40 yr
and frequency of storms increased through time over the period of record in the basin (d

Parameter description % of stations wit
significant trend
(p < 0.05, Mann–

Total rainfall (mm), short rains (October–December) 9.1
Total rainfall (mm), long rains (March–May) 0.0
Annual rainfall (mm) 9.1
Average rain per storm (mm) a, short rains 27.3
Average rain per storm (mm) a, long rains 36.4
Average arrival rate of rain events (day�1) k, short rains 18.2
Average arrival rate of rain events (day�1) k, long rains 45.5
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1980–1999 for East Africa (Figs. 10–18 in [41]). As a simple
experiment and conservative estimate of future changes in rainfall
patterns, we approximated the impact of future changes in rainfall
patterns on woody species vegetation distributions by linearly
extrapolating observed trends of increasing a and decreasing k.
2.3. Ecohydrological model

The mechanistic framework chosen is based on the conserva-
tion of water within the rooting zone of each species, forced by dai-
ly precipitation represented as a stochastic process. The following
is a brief summary of the model, which has been presented else-
where in full [35,36,55,58,59], see Appendix A. The rainfall RðtÞ
(mm day�1), is represented as a marked Poisson process of storm
arrivals in time with rate k (day�1), storm depth h (mm), where h
is treated as an exponentially distributed random variable with
mean a (mm). The interactions of climate, soil, and vegetation
were used to determine an analytical solution to the steady-state
probability distribution of soil moisture over the growing season
at a point for a single species. The various components of the water
balance are described by the steady-state probability distribution
of soil moisture over the growing season (Eq. (A.10)). The model
neglects lateral redistribution of water in the subsurface and inter-
actions with the water table (if present). The assumption is justi-
fied for arid and semi-arid conditions where the water table is
sufficiently deep (deeper than the rooting depth of each species)
and subsurface flow is negligible [57]. Well data records observed
at one location in the basin (Mpala Research Center, MAP =
500 mm) indicate a water table depth of at least 100 m [60].

The maximum daily potential evaporation rates, Emax

(mm day�1), are estimated for each species using the Penman–
Monteith formulation, scaled by maximum canopy conductance
[7]. The Penman–Monteith equation determines potential evapo-
transpiration (PET) according to consideration of both available
energy, Rnet (W m�2 day�1), and vapor pressure deficit. We deter-
mine vapor pressure deficit using relative humidity, RH (%), air
temperature, Ta (�C), and the assumption that leaf temperature is
the same as air temperature. Our approach further assumes that
PET is limited by both canopy and atmospheric conductance. We
define canopy conductance as the product of species leaf area,
LAI (m2 m�2), and maximum stomatal conductance, gsmax

(mmol m�2 s�1), and determine atmospheric conductance based
on average wind speed, u (m s�1), and canopy height, htree (m).
Details of this approach are given elsewhere [7]. We find that
growing season air temperature, Ta ðTa ¼ �0:0069 � zþ 32:045;
n ¼ 14; R2 ¼ 0:95Þ, and pan evaporation, Epan (mm day�1) ðEpan ¼
�0:0024 � zþ 9:8255; n ¼ 14; R2 ¼ 0:70Þ are linearly related to
basin elevation, z (m), while growing season daily relative humid-
ity, RH (mean = 69.5, standard deviation = 4.53, n = 10, R2 = 0.36),
and daily wind speed, u (mean = 1.95, standard deviation = 0.618,
n = 14, R2 = 0.056), are not linearly dependent on elevation (daily
(n = 11). The data suggests that total precipitation remained constant but the intensity
ata source NRM3).

h statistically
s
Kendall test)

Mean slope of all stations
through time
(Sen’s method)

Standard error
of slopes

0.298 0.333
�0.609 0.286
�0.652 0.930

0.043 0.016
0.040 0.017
�0.0010 0.00043
�0.0018 0.00057



Fig. 3. Time series of total seasonal precipitation (mm), average rain per storm (mm) a, average arrival rate of rain events (day�1) k, for short (October–December) and long
(March–May) rainy seasons for Jacobson Farm gauging station (record length = 75 yr). Trend analysis indicates total precipitation is not changing significantly with time but
storm depth and arrival rate of storm events are changing significantly (data source NRM3). Note: Trends in Jacobson Farm data are not necessarily indicative of entire basin.
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gauge data provided by NRM3 of Nanyuki, Kenya used in Fig. 4).
Therefore, we assume basin average values for RH and u.

The gauge density of precipitation (�60 stations across the ba-
sin, Fig. 1) is high enough to use an ordinary kriging algorithm to
make spatial estimates of a and k (Fig. 4). Soil parameters are esti-
mated from the 1980 UNESCO Kenyan Soils Map, its description
key, and commonly-used relationships between soil texture and
soil hydraulic characteristics (Table 2 and Fig. 2). The plant param-
eters, gsmax; w� (MPa), and wwilt (MPa), are estimated for the three
species from prior leaf-scale physiological measurements. We
specify plant height, htree, based on field observations. Interception
storage, D (mm), is taken to be a simple function of LAI
ðD ¼ 0:043 � LAIÞ. Specific references for parameter estimates, rela-
tive sensitivity, and certainty can be found in the descriptions of
Table 3.

The climate, soil, and vegetation parameters explained above
are used in the solution of the steady-state probability distribution
of soil moisture [36], which was subsequently used to describe
plant water stress during the growing season (Eqs. (A.6)–(A.9)).
Specifically, water stress begins to occur whenever soil moisture
values drop below the value of s�, the value corresponding to the
moment when plants begin to close their stomata. Water stress
values then increase to a maximum value of one as soil moisture
approaches plant wilting point, sw. At soil moisture values greater
than s�, plants are assumed to be stress-free with respect to water
availability. Here we assume that all Acacia species respond simi-
larly to water stress, such that soil moisture values approaching
the wilting point will be weighted more heavily than values near
incipient stomatal closure ðq > 1Þ. We address this assumption in
more detail in Section 2.5. While useful as a general measure of
plant water deficit, the daily static water stress (Eq. (A.6)) does
not account for the seasonal distribution of the frequency and
duration of stress periods below the critical value of s�. The dy-
namic water stress, �h (Eq. (A.9)), uses the crossing properties of soil
moisture over the growing season and is a normalized value be-
tween 0 and 1 with 1 representing the most stressed conditions.

With a description of seasonal water use (Eq. (A.10)) and water
stress (Eq. (A.9)) for a single point and species we partition the
landscape into individual grid cells. The landscape is resolved as
616 unique combinations of the spatially continuous soil and cli-
mate input parameters. The size of each grid cell (mean = 10.3 km2,
standard deviation = 28.1 km2, max = 284.5 km2, min = 0.5 km2),
varies according to local gradients of rainfall parameters (parame-
ter resolution of k ¼ 0:01; a ¼ 0:1 mm) and changes in soil texture
across the basin. Each grid cell is independent and represented as a
location containing a single set of species, soil, and climatic param-
eters. In each grid cell, growing season water balance, plant water
use, and plant water stress are evaluated for each of the three spe-
cies, A. drepanolobium, A. tortilis, and A. xanthophloea.

2.4. Fitness vector and calibration

The ecohydrologic water balance framework presented in the
previous section has been shown to be a satisfactory model for rep-
resenting the steady-state probability distribution function of soil
moisture over the growing season and subsequent representations
of evapotranspiration and plant water stress [49,61]. The question
that remains unanswered is what are the tradeoffs between re-
source use (evapotranspiration of available rainfall) and resource
scarcity (water stress)? The resolution of this question critically
determines the predictions of species distribution. To address this
problem, as well as propose a framework for species selection
based on competing resources, let the vector ~F, represent the dif-
ferent components of fitness for a particular species or functional



Fig. 4. Average growing season climatic forcings used to drive the model. Air temperature, Ta (�C), and pan evaporation, Epan (mm day�1), data are linearly correlated with
elevation, z (m) (Section 2.3) (a); net radiation, Rnet (W m�2 day�1) is estimated from pan evaporation using the inverse of the Penman-Combination equation [15] (b); average
arrival rate of storm events, k (day�1) (c); and average rain per storm, a (mm) (d); are estimated with ordinary kriging (n = 60) (data source NRM3).

Table 2
Summary of soil parameters used in model, where w ¼ wss

�b [10,15,59].

Soil type Sh ðw ¼ �10 MPaÞ Sfc ðw ¼ �0:03 MPaÞ ws (MPa) b Ks (cm day�1) n

Clay 0.47 0.78 �0.00182 11.40 1 0.500
Clay loam 0.36 0.70 �0.00160 8.50 10 0.475
Gravely claya 0.08 0.32 �0.00034 4.05 200 0.350
Loam 0.19 0.56 �0.00143 5.39 20 0.450
Loamy sand 0.08 0.30 �0.00017 4.38 100 0.420
Sandy claya 0.43 0.74 �0.00150 10.50 5 0.480
Sandy clay loama 0.32 0.66 �0.00115 8.00 45 0.465
Sandy loam 0.17 0.49 �0.00070 5.39 80 0.430

a Estimated value.
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group. The components of the vector are dependent on the ecosys-
tem and vegetation community in question. The following assump-
tions are used for this study of woody vegetation in dryland
ecosystems: (1) growth and reproduction are represented by total
evapotranspiration, which we determine using the modeled evapo-
transpiration over the growing season (Eq. (A.10)); (2) survival is
represented by plant water stress, which we determine using the
modeled dynamic water stress over the growing season (Eq.
(A.9)); (3) nutrient use and efficiency are neglected under the
assumption that changes in soil water dynamics will be the pri-
mary determinant of shifts in dryland vegetation patterns; (4)
the relative importance of growth and reproduction versus survival
are not weighted equally to overall plant fitness and require rescal-
ing coefficients, which we determine using the observed vegeta-
tion cover in the study basin. The selection of the most ‘‘fit”
species in a given grid cell is defined mathematically as follows:

Opt ¼ find species n which is the maximum of k~Fnk; ð1Þ

where Opt is the optimal species selected by the maximum value of
the magnitude of the fitness vector for each species n:
~F ¼ sE
hEi
hRi

� �nE

iþ s�hð1� �hÞn�h j; ð2Þ

where i, j denote the components of the fitness vector and
sE; nE; s�h; n�h are calibrated weighting coefficients all greater than
zero. Both components of the fitness vector are values between 0
and 1 and defined in terms of the primary modeled state variable
of soil moisture. We determined the three weighting coefficients
(sE is fixed as equal to 1 because there are only three independent
coefficients) by maximizing the percent agreement between mod-
eled and observed species cover. The optimal coefficients were
found with a non-gradient search algorithm, following initial explo-
ration of the three-dimensional coefficient space to select appropri-
ate starting values that avoided local minima. Visualization of the
coefficient space revealed smooth contours lending confidence to
the coefficient selection of the global minimum solution. The fitness
vector provides a framework for quantifying the tradeoff of soil
moisture between evapotranspiration and stress by modeling the
daily mass balance of water and selecting the optimal species in
each grid cell in the basin.



Table 3
Vegetation parameter estimates associated by species with descriptions of relative sensitivity and certainty in model parameters.

Species Acacia drepanolobium Acacia tortilis Acacia xanthophloea Relative sensitivity Relative certainty Source

Emax (cm day�1) Basin Basin Basin High Medium 1, 2, 3
Ew (cm day�1) 5% of Emax 5% of Emax 5% of Emax Low Low 5, 9
gsmax (mmol m�2 s�1) 325a 325 375 Low Medium 4
htree (m) 3.0 3.0 10.0 Low High 6, 10
K 0.5 0.5 0.5 Medium Low 9
LAI (m2 m�2) 1.57 (0.40)b 1.04 (0.28)b 2.46 (1.15)b Low High 11
q 2 2 2 Medium Medium 9
Tseas (day) 185 185 185 Medium High 10
Zr (cm) 75 75 90 High Medium 6, 8, 10
D (cm) 0.075c 0.050c 0.100c Low Medium 10
w� (MPa) �0.45a �0.45 �0.08 High Medium 4, 7
wwilt (MPa) �3d �4 �1.9 Low Medium 4, 7

1: [42].
2: [15].
3: [48].
4: [51].
5: [7].
6: [14].
7: [22].
8: [13].
9: [59].
10: Unpublished data (Franz) from field visits (2006, 2007, 2008, 2009).
11: MODIS 8-day, 1-km LAI/fPar product imagery from growing season June 1, 2004 DOY 153.

a Value adopted from A. tortilis.
b Mean and standard deviation of LAI. Pixel by pixel values were averaged using the species land cover maps and the MODIS imagery. A minimum of 1000 pixels for each

species were used to estimate mean and standard deviation.
c Value estimated for Acacia trees, D ¼ 0:043 � LAI.
d Value adopted from A. etbaica.

Table 4
Summary of basin wide determinants of modeled species spatial patterns derived from principal component analysis (PCA). The PCA coefficients ðEV1; EV2; EV3Þ indicate the
different loadings of each variable to the ranked eigenvalue. The first eigenvalue is weighted most by the four soil parameters, b; Ks ; n; ws , the second eigenvalue is weighted
most by temperature, Ta , and net radiation, Rnet (both functions of elevation, z), and the third eigenvalue is weighted most by the rainfall parameters, a and k.

Basin mean Basin standard deviation PCA coefficients

EV1 EV2 EV3

a (cm) 0.990 0.157 �0.2218 �0.3059 0.6096
k (day�1) 0.258 0.053 0.2488 0.3526 �0.5257
T (�C) 17.93 1.52 �0.2389 �0.5236 �0.3970
Rnet (W m�2 day�1) 3.29 29.06 �0.2258 �0.5247 �0.4191
b 7.59 2.58 0.4590 �0.1685 �0.0206
Ks (cm day�1) 60.70 59.85 �0.4188 0.3125 �0.1103
n 0.451 0.044 0.4297 �0.2946 0.0781
ws (MPa) �0.001062 0.000582 �0.4584 0.1404 �0.0137
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Calibration between the observed species (Fig. 2c) versus the
modeled species required rescaling of each component of the fit-
ness vector (Eq. (2)) because the relative importance of evapo-
transpiration versus stress avoidance was unknown. We assumed
the relative importance of evapotranspiration versus stress avoid-
ance for plant fitness in dryland ecosystems was independent of
species, life history, space, and time, therefore allowing us to assign
only one set of values for all species throughout the basin. Due to
the time lag for trees to reach maturity the calibration of the fitness
vector weighting coefficients was performed between the modeled
species with 1950 rainfall parameters and the observed vegetation.
After calibration, the performance of the model versus observed
species cover was: 78.7% by total area covered by the three species,
89.4% by A. drepanolobium, 46.0% by A. tortilis, and 57.7% by A. xan-
thophloea. Assuming the rainfall patterns of the entire basin are
changing similarly (Table 1), we obtained the 1950 rainfall param-
eters by using a linear trend with slopes for a = 0.04 mm yr�1 and
k = �0.0018 day�1 yr�1 as defined by the average slope of stations
with a record length greater than 40 yr. (Note: Jacobson Farm
gauge slope estimates of a and k are nearly double, Fig. 3.) The mid-
point of the precipitation dataset, neglecting stations with record
lengths less than 10 yr, is approximately 1975, which we assume
as the long-term average values of a and k (Fig. 4c and d).

2.5. Parameter sensitivity

Given the lack of information in the literature and difficulty of
making direct parameter estimates across the basin and within
species, we used multivariate statistical analyses and sensitivity
analyses to rank the importance of model input parameters. We
performed a principle component analysis (PCA) of the eight input
parameters ða; k; Ta;Rnet; b;Ks;n;wsÞ representing the interactions
of climate and soil on the spatial distribution of woody species in
the 616 unique grid cells defined in the basin (Table 4). Comparing
the relative values of the ranked eigenvalues, we found that the
first three eigenvalues account for nearly 95% of the explained var-
iance of the three species in the basin. Evaluating the estimates of
the first three PCA coefficients, EV1; EV2, and EV3 (Table 4), we
found that a majority of the first axis, EV1, is weighted more heav-
ily by the four soil texture variables ðb;Ks;n;wsÞ. The first axis ac-
counts for 53% of the species variance, which indicates that soil
texture has a dominant control on current vegetation patterns



Fig. 5. Model results of woody species distribution patterns using linear trends in time for basin average rain per storm a (0.04 mm yr�1) and average arrival rate of storm
events k (�0.0018 day�1 yr�1), where (a) is rainfall from 1950, (b) 1975, (c) 2000, (d) 2025, and (e) is observed patterns. The calibration results between modeled (a) and
observed land cover (e) are: 78.7% by total area, 89.4% by A. drepanolobium, 46.0% by A. tortilis, and 57.27% by A. xanthophloea. The changes in species cover with time suggest
an upslope migration of A. xanthophloea and A. tortilis (a–d) to areas with greater total precipitation in response to decreased infiltration from more intense infrequent storm
events.
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within the basin. The second orthogonal axis accounts for 25% of
the variance and is weighted more heavily by Ta and Rnet , which
controlled available energy for evapotranspiration across the basin.
The growing season parameters Ta and Rnet were found to be linear
functions of elevation, z, in the basin (Section 2.3 and Fig. 4), which
indicates the variance explained by the second axis is due to the
elevation gradient. The third orthogonal axis accounts for 16% of
the variance and is weighted more heavily by the rainfall parame-
ters a and k.

Although soil and climate play a large role in determining spe-
cies distribution patterns, the model is also sensitive to plant
parameters. We characterized the model sensitivity to plant
parameters by changing a single parameter value in select grid
cells around the basin and categorizing the relative sensitivity
(Table 3). The model parameters were organized into three sensi-
tivity categories, low, medium, and high, based on comparing the
ratios of the perturbed parameter value to the mean parameter
value that caused a change in species type. We found that the
parameters Emax; Zr , and w� had the greatest impact on the mod-
eled species with relatively small changes in magnitude. The max-
imum evapotranspiration rate, Emax, was estimated with the
Penman–Montheith equation and was a function of both climate
ðTaðzÞ;RnetðzÞ;u;RHÞ and plant parameters ðgsmax;htree; LAIÞ. The
interplay between climate and vegetation made it difficult to
distinguish any one parameter ðTðzÞ;RnetðzÞ;u;RH; gsmax;htree; LAIÞ
as dominant, we therefore categorized the individual input param-
eters as low relative sensitivity [5]. The effective rooting zone, Zr ,
was found to have high relative sensitivity as it had a large impact
on modeled soil moisture. The matric potential at incipient stoma-
tal closure, w�, was very sensitive because it changed the soil mois-
ture value at which water stress began. Because this is a water-
controlled ecosystem, changing the value at which stomatal clo-
sure occurred had a large effect on evapotranspiration, which
was the other determining factor for species distribution patterns
(Eq. (2)). The parameters, k and Tseas, scaled the dynamic stress over
the growing season and exhibited a medium relative sensitivity
(Eq. (A.9)). The parameter controlling the concavity of the relation-
ship between soil moisture and stress, q, was found to have a med-
ium relative sensitivity. It is very likely that q > 1, so that dryland
vegetation will become more stressed as soil moisture values
approach the wilting point. However, see [59] for a detailed discus-
sion of the rationale for selection of k and q values. The parameter
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estimates of evaporation, Ew, near the wilting point, and wwilt , had
low relative sensitivity, which was consistent with our assumption
that evapotranspiration of vegetated areas is primarily controlled
by plant transpiration and not bare soil evaporation. The canopy
interception, D, was found to have low relative sensitivity because
average storm depths in the growing season were much greater
than canopy interception values.
Fig. 6. Model results of woody species distribution patterns using rainfall param-
eters, a and k, which vary lp while holding r2

p constant (a–d), and vary r2
p while

holding lp constant (e–h). Increases in either r2
p or lp lead to greater extent of A.

xanthophloea (c, d, g, and h), while decreases in either r2
p or lp lead to greater extent

of A. tortilis (a, b, e, and f). Specific rainfall parameter estimates, a; k, r2
p , and lp , for

each case can be found in Fig. 7.
3. Results

3.1. Modeled changes in species patterns

We investigated changes in the species distribution patterns
using two sets of rainfall scenarios. With the first set of scenarios
we explored changes in the species patterns driven by the mean
slope of linear trends in time for the basin rainfall parameters,
a = 0.04 mm yr�1 and k = �0.0018 day�1 yr�1. The changes in rain-
fall were applied uniformly across the basin and the new species
patterns were estimated with the model and fitness vector
(Fig. 5). The modeled changes in species cover for the Upper Ewaso
Ng’iro River basin indicated the upslope migration of A. xan-
thophloea and A. tortilis to areas with higher mean annual precipi-
tation. The modeling results also suggested the expansion of A.
drepanolobium to areas inhabited by A. xanthophloea with the rain-
fall scenarios from 2025 (Fig. 5d). The modeling results found the
territory of A. tortilis expanding into the drier parts of the basin
occupied by A. drepanolobium (Fig. 5c and d).

The second set of rainfall scenarios investigated the impact of
changes on the species spatial distribution patterns in response
to either changes in the basin mean or variability growing season
precipitation. We define basin mean growing season precipitation
as lp ¼ �a�kTseas (mm), where �a and �k are the long-term average ba-
sin values given in Table 4 and Tseas (day) is the length of the grow-
ing season, which we assume to be constant (Table 3). We define
r2

p (mm2) as the variance of growing season rainfall derived from
the model representation of rainfall as a marked Poisson process,
which is determined by r2

p ¼ 2�a2�kTseas. These two definitions allow
us to test rainfall scenarios where lp is changing while r2

p is held
constant and r2

p is changing while lp is held constant. The results
in Fig. 6 illustrate basin-scale changes in spatial distribution pat-
terns of the three modeled species due to changes in only lp and
r2

p . At values of lp and r2
p lower than the long-term mean

(Fig. 6a, b, e, and f) we found that A. tortilis expanded its territory
and the territory of A. xanthophloea was reduced. In contrast, at val-
ues of lp and r2

p higher than the long-term mean (Fig. 6c, d, g, and
h) we found that A. xanthophloea expanded its territory and A. tor-
tilis’s territory was reduced in the basin. The model results indi-
cated that increases (decreases) in lp (Fig. 6a–d) result in similar
spatial patterns of the three species as increases (decreases) in
r2

p (Fig. 6e–h), suggesting changes in growing season rainfall vari-
ability are comparable to changes in growing season precipitation.
We also observed a similar relationship between lp and r2

p when
looking at the relative fractional cover of the three species in the
basin (Fig. 7). The implications of these patterns on how we inter-
pret changes in mean rainfall and rainfall variability in drylands
are discussed below.
3.2. Utility of the fitness vector framework

As explained above, rescaling the components of the fitness vec-
tor was necessary to estimate the relative importance of water use
(fractional evapotranspiration from available rainfall) and avoid-
ance of water stress (dynamic water stress over the growing sea-
son). The rescaled weighting coefficients suggest that water use
is more important than avoidance of water stress to the overall fit-
ness (Fig. 8). We tested the predictions of the fitness vector frame-
work against a set of other models (Table 5). The models
represented the two end members of predictive skill in the set of
all possible models and served as a way to bound the results of
the fitness vector framework. The measure of model skill was pre-
sented with two metrics: percent agreement of each species and
Cohen’s j [19]. Cohen’s j is a measure between �1 and 1, where
0 is equivalent to a random model and 1 is perfect agreement be-
tween all species in all locations and is evaluated with j ¼ PrðaÞ�PrðeÞ

1�PrðeÞ ,
where PrðaÞ is the probability of agreement of all species and PrðeÞ
is the probability of random agreement. The lower bound was rep-
resented by selection of a random species for every location or by
selection of the same species in all locations. We chose a neural



Fig. 7. Model sensitivity study of species fractional cover in the basin under changing r2
p or lp while holding the other parameter constant (a and b). The change in species

fractional cover is comparable, but inversely related. Rainstorms become more intense and less frequent for the two cases of changing lp or r2
p while holding the other

constant but the direction of the changes is opposite (c). Specific species distribution patterns in the basin are illustrated in Figs. 6 and 5 (where rainfall = 1975, is defined as
the long-term average rainfall).

Fig. 8. Rescaled fitness vector components using the calibrated weighting coefficients versus the null hypothesis that all coefficients are equal to one (a) and the resulting
contours of the magnitude of the fitness vector (b). The relative values of sE and s�h , indicate that near conditions of maximum water use and minimum stress, transpiration is
twice as important as water stress. The relative values of nE and n�h , suggest that stress only begins to decrease fitness at high values, while transpiration substantially
increases fitness even at low values.

Table 5
Summary of agreement between different models and observed species cover. Neural network models perform better than the fitness vector framework but at a cost of losing the
physical interpretation of the system and not allowing innovative species to compete without prior calibration. A tradeoff between approaches exists between model accuracy
and flexibility to innovative systems and interpretation of physical mechanisms.

Methodology A. drepanolobium (%) A. tortilis (%) A. xanthophloea (%) Total (%) Cohen’s j

Fitness vector 89.4 46.0 57.7 78.7 0.506
Neural net 94.0 84.2 81.9 90.1 0.802
All A. drepanolobium 100.0 0.0 0.0 66.0 0.000
All A. tortilis 0.0 100.0 0.0 10.9 0.000
All A. xanthophloea 0.0 0.0 100.0 23.1 0.000
Random model 33.3 33.3 33.3 33.3 0.000
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network as an upper bound because of their properties as a power-
ful predictive model for linear and nonlinear data [26,37]. In our
implementation, the neural network is represented by a series of
connected logistic equations, where the parameter estimates were
optimized with nonlinear regression. The inputs to our neural net-
work model were elevation, z (which determines both TaðzÞ and
RnetðzÞ according to Fig. 4), a; k, and soil texture. The optimal neu-
ral network outperformed the fitness vector, with an accuracy of
90%, compared to 79% for the fitness vector approach and a Cohen’s
j of 0.80 compared to a value of 0.51 for the fitness vector ap-
proach (Table 5). These results indicate the fitness vector approach
fails to capture 11% of the possible information regarding species
occurrence. These reasons for this discrepancy are discussed
below.
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4. Discussion

4.1. Water use versus stress avoidance

While early studies on optimality regarding vegetation patterns
focused solely on maximization of resource use [16,17], more re-
cent approaches have begun to consider the additional costs of
chronic resource scarcity that accompany over-consumption of
limited resources [8,68]. However, we are not aware of any prior
uses of ecohydrological optimality approaches to predict basin-
scale patterns of individual species distribution. We address the is-
sue of species distribution through the development of a fitness
vector framework (Eq. (2)) based on a hypothesis that dryland veg-
etation patterns are constrained by maximization of water use and
simultaneous minimization of water stress [8]. In order to apply
this framework to predict the impact of rainfall variability on fu-
ture vegetation patterns, we define a single set of fitness vector
weighting coefficients that maximize agreement with observed
species patterns in the Upper Ewaso Ng’iro River basin. The magni-
tude of these coefficients provides insight into the relative impor-
tance and degree of sensitivity that each fitness vector component
has on species distribution. Specifically, the relative importance of
water use and stress occurrence are given by the relative magni-
tude of sE and s�h, while the degree of nonlinearity between each
of these two terms and their effect on total fitness is described
by nE and n�h (Fig. 8a). In the absence of any prior information,
we might assume that water use and water stress are equally
important, such that sE ¼ s�h ¼ 1, and that each of these compo-
nents contribute to total fitness in a linear manner, nE ¼ n�h ¼ 1.
These assumptions provide a null hypothesis against which our
rescaled fitness vector components can be compared (Fig. 8a).
However, when we calibrate the fitness vector weighting coeffi-
cients (sE ¼ 1; s�h ¼ 0:447; nE ¼ 0:451, and n�h ¼ 0:700) we find that
instead of being the same, the relative values of sE and s�h vary such
that fractional evapotranspiration from available rainfall (Eq. (2)
component i) is more important (i.e. is weighted more heavily)
than dynamic water stress (Eq. (2) component j) when determining
species fitness. In addition, both nE and n�h are less than one. In the
case of nE, a value less than one indicates that increasing amounts
of water use are less and less important for determining total
fitness. In contrast, the fact that n�h is less than one indicates that
stress only becomes an important factor in determining overall
fitness when stress values are close to one because of its represen-
tation in Eq. (2) as one minus dynamic water stress. The magnitude
of the calibrated fitness vector (Fig. 8b) illustrates the greater
weighting due to fractional evapotranspiration from available rain-
fall than dynamic water stress. We acknowledge that assigning
global weighting coefficients downplays the possibility that indi-
vidual species have their own specific fitness vector that allows
them to occupy specific niches. However, the fact that our frame-
work includes consideration of both water use and water stress al-
lows us to use a single representation of fitness to determine
regional patterns of where species exist in the basin, even if the
individual species have unique strategies of water use and stress
avoidance. For example, the best possible set of weighting coeffi-
cients that only considers water use (coefficients sE; nE) results
in a basin almost completely occupied by A. xanthophloea, and a
reduction in total accuracy of 56% . In contrast, the best possible
set of weighting coefficients that only considers stress (coefficients
s�h; n�h) results in a basin completely occupied by A. tortilis, and a
reduction in total accuracy of 86%. Therefore, it is only possible
to obtain coexistence of all three species using a set of weighting
coefficients that consider both resource use and limitation. Subse-
quently, we must assign global rules to determine basin-scale
responses and species-specific distribution patterns.
4.2. The role of changes in the mean and variance of rainfall on species
spatial patterns

When observed mean trends in rainfall are incorporated into
our ecohydrological model, A. xanthophloea and A. tortilis are pre-
dicted to migrate upslope to areas with higher mean annual pre-
cipitation, with A. drepanolobium predicted to occupy areas
vacated by A. xanthophloea. We interpret these shifts in terms of
the physiological and structural parameters of the individual spe-
cies included in this analysis. A. xanthophloea is the tallest species
ðhtreeÞ, has the deepest effective root zone ðZrÞ, and highest stomatal
conductance ðgsmaxÞ resulting in the largest use of water ðEmaxÞ
(Table 3).

The modeled effects to A. xanthophloea distribution range are
most significant in the Mukogodo forest area (Fig. 1), which is com-
pletely eliminated in the model using the interpolated rainfall
parameters from 2025 (Fig. 5d). The temporal changes in rainfall
parameters (a and k) lead to greater water use from available rain-
fall for A. drepanolobium and A. tortilis, while A. xanthophloea’s
water use remains relatively static (Fig. 9). We also find that dy-
namic water stress values increase for all three species. However,
because sE is greater than s�h, the fitness vector is most heavily
weighted towards water use. Therefore, the predicted result of
changing rainfall parameters in the Mukogodo forest is an increase
of fitness for A. drepanolobium and A. tortilis with A. drepanolobium
outcompeting A. xanthophloea when the 2025 rainfall parameters
are used in the model. The fact that these changes are predicted
even though local inter-species competition is not explicitly taken
into account suggests that the Mukogodo forest is an area that may
be extremely sensitive to shifts in climate over the coming
decades.

Temporal changes in rainfall also suggest that A. tortilis will ex-
pand into the driest areas previously dominated by A. drepanolobi-
um (Fig. 5c and d). The expansion of A. tortilis is due to the fact that
this species has the lowest wilting point (wwilt , Table 3) and stress
values, which leads to higher relative fitness values when soil
moisture is more frequently near the wilting point. As rainfall be-
comes more intense and less frequent, A. tortilis’s fractional water
use actually increases, which leads to higher fitness values. Despite
the expansion of A. tortilis on sandy soils, the model predicts the
continued dominance of A. drepanolobium on the black cotton clay
soils, which suggests that soil texture will continue to play a large
role in explaining the distribution of species patterns in the basin.

In addition to temporal changes in rainfall patterns, we also
investigated how separately varying basin mean growing season
precipitation, lp, and growing season rainfall variability, r2

p , im-
pacts species distribution patterns and fractional cover (Figs. 6
and 7). We find that the response of species patterns and fractional
cover are similar when changing the mean and variance of rainfall,
but that these responses are opposite in direction with respect to
the frequency and intensity of rainfall. The model results suggest
that the magnitude of shifts in species cover due to changing lp

and r2
p are comparable. With respect to the current climate in

the basin, the model results indicate the distribution and relative
abundance of the three species are stable with changes of less than
5% to either lp or r2

p (Fig. 7a and b). The model predicts larger
changes in the distribution of species and fractional cover as the
basin rainfall regime moves towards the extremes of changes in
lp or r2

p . Moving away from the current rainfall towards either
decreasing lp or decreasing r2

p , we found A. tortilis’s fractional cov-
er slightly increases while A. xanthophloea’s fractional cover de-
creases (Fig. 6a, b, e, and f). We find the opposite patterns when
moving away from the current rainfall towards either increasing
lp or increasing r2

p (Fig. 6c, d, g, and h). Over most parts of the sim-
ulation range, A. drepanolobium remains the dominant species in
the basin. The changing relative distribution of A. xanthophloea



Fig. 9. Model results for fractional evapotranspiration from available rainfall, dynamic water stress, and the magnitude of the fitness vector for the Mukogodo forest using
observed linear trends in time for rainfall parameters. The results illustrate the increase in fractional evapotranspiration of available rainfall for A. drepanolobium and A. tortilis
while A. xanthophloea remains relatively static. The increases in water use result in A. drepanolobium having a higher fitness than A. xanthophloea using the rainfall parameters
from 2025, which indicates that this area may sensitive to observed shifts in rainfall.
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and A. tortilis is due to the separate effects of changing rainfall on
evapotranspiration and stress. As either lp decreases (with r2

p held
constant) or r2

p increases (with lp held constant), storms become
more intense and less frequent (Fig. 7c). Initially, these larger
storm depths lead to deeper infiltration fronts, but the reduction
in storm frequency still causes average soil moisture values over
the growing season to be lower. Overall, these changes lead to
higher fractional water use relative to total rainfall, but the reduc-
tion in soil moisture causes greater stress values. Because water
use is weighted more heavily to total fitness, when either the
average rainfall declines or the variance in growing season rainfall
increases, species that are able to maximize water use will have
higher fitness. This is demonstrated by the example of A. tortilis,
using a location from the northern portion of the basin, where rain-
fall is low and A. tortilis is currently dominant because stress values
of A. xanthophloea and A. drepanolobium are high (Fig. 10). Although
decreases in mean growing season rainfall lead to a dramatic in-
creases in A. tortilis’s water stress, overall it still is able to maintain
a lower stress value than the other two species, which exhibit
chronic water stress across all values of average rainfall
(Fig. 10b). Therefore, the modest increase in relative water use
by A. tortilis (Fig. 10a) when rainfall is lowered is sufficient to allow
it to remain the dominant species under the lower mean total rain-
fall scenarios (Fig. 10c). However, when lp is increased (with r2

p

held constant), despite further reductions in water stress
(Fig. 10b), lower relative water use (Fig. 10a) causes A. tortilis to
be replaced by species capable of using greater amounts of soil
moisture (A. drepanilobium).

Although decreasing lp at constant r2
p is similar to increasing r2

p

at constant lp (they both involve larger, less frequent storms,
Fig. 7c), higher variances in rainfall at this northern, more arid loca-
tion do not lead to higher fitness values of A. tortilis (Fig. 10f). This
is because A. tortilis stress increases (Fig. 10e) without any substan-
tial increase in water use (Fig. 10d). The reason for this increase in
stress despite the lack of changes in total rainfall is the greater
duration between storms, which leads to longer, more frequent
periods of low soil moisture. A. drepanolobium is already near fully
stressed conditions (Fig. 10e), so shifts in rainfall have very little
impact on its total stress. The increases in stress for A. tortilis and
stable stress values for A. drepanolobium lead to higher fitness val-
ues for A. drepanolobium in this part of the basin (Fig. 10f).

The impact of changes in rainfall variability and changes in total
rainfall on dryland woody vegetation patterns and relative abun-
dance are comparable, but inversely related. Along the gradient
of increasing variance with a constant mean growing season rain-
fall, the model predicts the expansion of the riparian species A. xan-
thophloea, which takes advantage of its higher transpiration rates.
However, as the rainfall regime approaches the lower extremes
of decreasing rainfall variability, the range of the most drought tol-
erant species A. tortilis expands. The expansion and contraction of
riparian and drought tolerant species is a major concern of many
drylands around the world [1,4,11,31]. For example, in much of
the southwest United States woody riverine species have been re-
placed by more drought tolerant species such as Tamarix ramosiss-
ima [4,11]. These changes have occurred over a period during
which observations of rainfall have shown a shift towards more
frequent, less intense storms [21,28]. Our results therefore provide
a theoretical context for prior studies that have linked expansion of
drought-tolerant invasive in the US desert southwest to altered
rainfall climatology [20,56,67,78]. As an example, our model
predicts both the expansion and the contraction of the drought tol-
erant species, A. tortilis, in the study basin depending on the nature
of changing rainfall scenarios (Fig. 10).

4.3. Model limitations and future directions

Our model captured 79% of the available 90% of information
derived from the neural network results (Table 5) [26,37]. While



Fig. 10. Model results for fractional evapotranspiration from available rainfall (a and d), dynamic water stress (b and e), and magnitude of the fitness vector (c and f) for one
point in the northern portion of the basin, which is currently dominated by the drought tolerant species A. tortilis. The sensitivity of the system is tested by varying lp , while
holding r2

p constant, and by varying r2
p while holding constant lp . The results illustrate that the relative changes in water use and stress of the three species lead to different

species having the highest fitness value using different rainfall scenarios.
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it is not possible to determine the exact reasons for the difference
in accuracy between our fitness vector approach and the neural
network model, we believe the most likely factor reducing the fit-
ness vector accuracy is the fact that, once-established, species may
be able to remain in a location regardless of their fitness relative to
competitors. Other factors that could possibly be necessary to im-
prove our model’s performance include the impact of local compe-
tition and facilitation for water and light, disturbance (including
herbivory and fire), nutrient use and intra-species variation.
Furthermore, despite the fact that the neural network performed
better, it has no physical interpretation and would be extremely
difficult to use with a novel dataset [6]. The basis of the fitness vec-
tor framework is the mass balance of water, which allows for phys-
ical interpretations and characterization of the mechanisms
underlying model predictions.

Given the ability of the framework to capture the woody species
distribution, we believe it is an useful tool for addressing climate
change in dryland ecosystems on a regional scale for the following
reasons: (1) the model performs well in the heterogeneous Upper
Ewaso Ng’iro river basin, where vegetation patterns are influenced
by complex interactions of soil, climate, and topography, (2) the
model utilizes a parsimonious, analytical model of stochastic water
balance, (3) the model is sensitive to subtle shifts in both rainfall
frequency and rainfall depth, and (4) the model contains a rela-
tively low number of parameters compared to other regional spe-
cies models [44].
In our view, the largest challenge that remains for the modeling
framework is the availability of species-specific parameters and
improved understanding of how those parameters vary in space
and time within species. For the current work, we were able to
identify and parameterize (with some level of certainty, see Table
3) three woody species in the basin, which are dominant in approx-
imately 60% of the area. The plant ecohydrological characteristics
of the remaining woody species and functional groups in the basin
are largely unknown. In particular, the influence of climate change
on plant transpiration, growth, reproduction, and survival needs to
be addressed with empirical studies. For example, methods
capable of characterizing plant water use and plant water stress
at landscape scales would help constrain parameters. Another
plant parameter in need of further investigation is rooting depth,
especially along natural gradients where a particular species is
dominant.

Recent studies have revealed important feedbacks can occur
between plant species and higher trophic levels that impact trajec-
tories of community response to shifts in rainfall [71]. In addition,
long-term experiments have shown that the removal of large her-
bivores has significant impacts on the growth, reproduction, and
survival of woody vegetation [23]. Empirical studies have also
demonstrated that herbivore and plant interactions can cascade
into other communities of organisms [52]. Based on these studies,
we expect that future range shifts in woody species will be greatly
affected by complex ecological interactions influenced by
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herbivores that are characteristic of many African savannas. How-
ever, because plant–herbivore interactions are almost always spe-
cies-specific, this effort represents a necessary step towards
achieving more robust estimates of whole-ecosystem response to
climate change. Furthermore, although our model predicts plant
species response to only changes in rainfall, we have demonstrated
the high degree of sensitivity that species distributions can exhibit
to subtle shifts in climate, even across a group of highly-related,
drought-adapted trees. Therefore, we believe our approach
demonstrates the utility of species-level predictions as a means
for developing a more integrated assessment of coupled commu-
nity-level interactions when attempting to describe transient
vegetation responses to climate change.
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Appendix A. Water balance model

A full description of the water balance model is provided else-
where [35,36,55,58,59]. Here we present a general overview of
the governing equations and solutions. The governing equation
for the root-zone daily soil moisture is a stochastic ordinary differ-
ential equation

nZr
dsðtÞ

dt
¼ u½sðtÞ; t� � v½sðtÞ�; ðA:1Þ

where n is the soil porosity (dimensionless), Zr is the effective root
depth (mm), sðtÞ is the root-zone relative soil moisture, u½sðtÞ; t� is
the marked Poisson process of inputs into the soil from rainfall
events (mm day�1), and v½sðtÞ� is the soil moisture losses from the
root zone (mm day�1). The input function u½sðtÞ; t�, is given by

u½sðtÞ; t� ¼ RðtÞ � IðtÞ � Q ½sðtÞ; t�; ðA:2Þ

where RðtÞ is rainfall, IðtÞ is canopy interception, and Q ½sðtÞ; t� is run-
off (all in mm day�1). The loss function v½sðtÞ�, is defined

v½sðtÞ� ¼ E½sðtÞ� þ L½sðtÞ�; ðA:3Þ

where E½sðtÞ� is evapotranspiration and L½sðtÞ� is leakage through the
root zone (both in mm day�1). The rainfall RðtÞ (mm day�1), is rep-
resented as a marked Poisson process, as described in manuscript
text (Section 2.3). The model incorporates interception from the
canopy by assuming a threshold storm depth D (mm), below which
no water penetrates the canopy. The frequency of infiltration events
is given by

k0 ¼ ke
�D
a : ðA:4Þ

where k0 is the censored mean arrival rate of storms (day�1). When
the depth exceeds the storage capacity of the soil, saturation runoff,
Q ½sðtÞ; t�, is produced. Leakage, L½sðtÞ�, represents the vertical perco-
lation with unit gradient and is represented by

L½sðtÞ� ¼ Ks

ebð1�sfcÞ � 1
½ebðs�sfcÞ � 1�; ðA:5Þ
where Ks is the vertical saturated hydraulic conductivity
(mm day�1), sfc is the soil field capacity (dimensionless), and
b ¼ 2bþ 4, where b is the pore size distribution index (dimension-
less) [10]. The daily evapotranspiration, E½sðtÞ�, is modeled using a
piecewise function of soil moisture [36]. The loss function is zero
at and below the residual saturation of soils, sh (dimensionless).
Between the soil hygroscopic point, sh, and the plant wilting point,
sw (saturation where permanent damage is incurred by the plant,
dimensionless), the loss function varies linearly rising to a
maximum soil evaporation rate, Ew (mm day�1). Between the plant
wilting point, sw, and the saturation where the stomata begin to
close, s� (dimensionless), the loss function linearly increases from
Ew to the maximum daily evaporation rate, Emax (mm day�1).
Between s�, and sfc , the loss function is equal to Emax. Finally, above
field capacity, sfc , the loss function is equal to the sum of Emax and
leakage, L½sðtÞ�. The values of sfc; sh; sw; s� are related to the matric
potential of the soil, w (MPa), which are defined by soil type, using
the soil-retention curves [10]. Values of Emax are estimated for each
species using the Penman–Monteith formulation of potential
evapotranspiration, scaled by maximum canopy conductance [7]
(Section 2.3).

The climate, soil, and vegetation parameters are used to
determine the steady-state probability distribution of soil moisture
over the growing season (see [36] for the full model solution). The
normalized degree of stress experienced is given by

fðtÞ ¼

1 if sðtÞ 6 sw;

s��sðtÞ
s��sw

h iq
if sw 6 ðtÞ 6 s�;

0 if sðtÞ > s�;

8>><
>>:

ðA:6Þ

where q accounts for the nonlinear relationship between plant
stress and the soil moisture and assumed equal to two [59]. The dai-
ly static water stress does not account for the seasonal distribution
of the frequency and duration of stress periods below the critical va-
lue of s�. The mean duration of an excursion, TnðfÞ (day), below any
given soil moisture threshold, n, is given by [55]

TnðfÞ ¼
PðnÞ

vðnÞpðnÞ ; ðA:7Þ

where PðnÞ is the value of the cumulative soil moisture distribution
function at the threshold value n; pðnÞ is the value of the probability
soil moisture distribution function at the threshold value n, and vðnÞ
is the value of the loss function at the threshold value, n. The mean
number of excursions, �nn (dimensionless), below a given threshold
value n, is given by [55]

�nn ¼ Ce�csn Tseas; ðA:8Þ

where C is an integration constant, c ¼ nZr
a (dimensionless), and Tseas

(day) is the number of days in the growing season. The values of Ts�
and �ns� provide a way of characterizing stress values during the
growing season. The average dynamic water stress over the growing
season is defined as follows [55]

�h ¼
�f0Ts�
kTseas

� ��ns�
�f0 � Ts� < kTseas;

1 otherwise;

8<
: ðA:9Þ

where �h is a normalized value between 0 and 1 with 1 represent-
ing the most stressed conditions, �f0 is the mean ‘‘static” stress dur-
ing an excursion below s�, and k is the resistance of the plant to
water stress and assumed equal to 0.5 for all species [7,55,59].
Each component of the seasonal water balance is defined as
follows [59]
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h/i ¼ hRi � hIi � hQi;
hRi ¼ ak;

hIi ¼ aðk� k0Þ;
hQi ¼ a gþ Ks

nZr

� �
pð1Þ;

hEi ¼ ak0Pðs�Þ � agpðs�Þ þ Emax½1� Pðs�Þ�;
hLi ¼ a k0 � k0PðsfcÞ � gþ Ks

nZr

� �
pð1Þ þ gpðsfcÞ

h i
� Emax½1� PðsfcÞ�;

8>>>>>>>>>><
>>>>>>>>>>:

ðA:10Þ

where the brackets h i, represent steady-state averages taken over
the growing season.
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