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A spatially continuous field of landscape fractional covers of tree, grass and bare soil is required at regional and
continental scales for earth system modeling and environmental monitoring. Climate and its variability drive
vegetation fractional cover over time and space. For savanna ecosystems, precipitation plays the main role in
shaping vegetation composition. In this study, we estimate land cover fraction at a satellite pixel scale by
employing an existing ‘Mean-Sensitivity Unmixing Algorithm’ (MSUA), which is based on a state space defined
by twokey variables: (1)meanpixel values (referring tomean vegetation states), and (2) inter-annual sensitivity of
pixel values to precipitation (referring to vegetation sensitivity to precipitation). We define these two variables
through a multi-sensor assessment of three vegetation remote sensing datasets, namely (i) Normalized Difference
Vegetation Index (NDVI), based on the visible and near-infrared bands from the Advanced Very High Resolution Ra-
diometer (AVHRR); (ii) backscatter coefficients (dB) from the NASA QuikSCAT active-microwave scatterometer;
and (iii) Vegetation Optical Depth (VOD) based on NASA Advanced Microwave Scanning Radiometer on EOS
(AMSR-E) passive-microwave radiometry measurements. A merged satellite-gauge precipitation dataset from the
Tropical Rainfall MeasuringMission (TRMM) version 3B42V6 is used. The three remote sensing datasets show gen-
erally similar but distinctive performances in characterizing the two key variables over various land cover types.
NDVI and VOD perform better than dB in characterizing land cover variation based on mean pixel values; while
dB represents more reliable and robust vegetation sensitivity to precipitation. By using NDVI for mean vegetation
states and dB for inter-annual variability of vegetation to precipitation, we develop an improved fractional cover
product.Wefind that our product agreeswell with the tree fraction derived fromhigh-resolution images for natural
vegetation regions, and can reproduce the distinctive land cover pattern of grass and bare soil in theModerate Res-
olution Imaging Spectroradiometer (MODIS) land cover product. For cropland-mixed regions, our tree fraction is
overestimated since human impacts (e.g. irrigation) have not been accounted for in the MSUA. The improved per-
formance from our approach is achieved by the synergistic use of the three vegetation remote sensing datasets, and
their physical interpretations have been discussed to support the validity of this approach.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Vegetation structure and composition play an important role in un-
derstanding ecosystem functioning (e.g. fire and grazing), as well as in
managing ecosystem services (e.g. deforestation monitoring) (Hirota
et al., 2011; K'efi et al., 2007;Mayaux et al., 2005;Miles et al., 2006). Veg-
etation fractional cover is also crucial for representing sub-pixel hetero-
geneity in climate and land-surfacemodels (Avissar & Verstraete, 1990;
Gutman & Ignatov, 1998; Zeng et al., 2000). Thus a spatially-continuous
and reliable representation of vegetation fractional cover is required at
regional and continental scales. This is especially true for savanna eco-
systems, which are typically characterized as a mixture of woody and
herbaceous vegetation (Sankaran et al., 2005; Scholes & Archer, 1997).
Savanna ecosystems comprise approximately 20% of the global land
area and up to 40% of the African continent (Scholes & Walker, 1993).

This vast terrestrial extent makes savanna ecosystems a significant com-
ponent in the global terrestrial carbon budget (Grace, 2004; Randerson
et al., 1997). Possible degradations in savanna ecosystems induced by
drought, overgrazing, fire regime shift, and woody encroachment in
the context of a changing climate warrant a better quantification of the
relative abundance of vegetation fractional covers.

Climate variability shapes the landscape structure at various spatial
and temporal scales, with precipitation being the major driving force in
characterizing vegetation composition in savanna ecosystems (Good &
Caylor, 2011; Rodriguez-Iturbe & Porporato, 2004; Scanlon & Albertson,
2003). Different vegetation types respond differently to precipitation
patterns. In particular, herbaceous plants utilize dense and shallow root
systems to use ephemerally available water in the upper soil layer,
while woody plants have a root system which can penetrate deeper
soil layers and access a more stable supply of soil water (Scanlon et al.,
2002). In addition, herbaceous plants in dry/semi-dry savanna ecosys-
tem have a photosynthetic pathway (C4) that synthesizes more carbon
per unit of water than do C3 woody plants (Ehleringer & Monson,
1993). For these reasons, herbaceous plants are more sensitive to
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precipitation and have a relatively low above-ground biomass. Woody
plants, on the other hand, are less sensitive to precipitation variability
with a relatively high above-ground biomass (Scanlon et al., 2002;
Scholes & Walker, 1993). Thus it is possible to estimate sub-pixel frac-
tional covers by leveraging the differences in trees and grasses in terms
of their above-ground biomass and their sensitivity to precipitation.

Remote sensing (RS) provides the most efficient way to derive
fractional covers at regional and global scales. At medium to coarse
resolutions (>250 m), representative RS-based approaches for deriv-
ing vegetation fractions include:

(i) spectral-based supervised classification (hereafter referred as
‘SC’, e.g. Friedl et al., 2002; Hansen et al., 2003);

(ii) spectral-based linear unmixing techniques (‘SU’, e.g. DeFries et
al., 1999; Okin, 2007);

(iii) relative vegetation abundance approach scaled by maximum
and minimum vegetation index (‘RA’, e.g. Gutman & Ignatov,
1998; Zeng et al., 2000);

(iv) multi-angle geometric-optical model (‘GO’, e.g. Chopping et al.,
2008, 2009); and

(v) ‘Mean-Sensitivity Unmixing Algorithm’ (MSUA) based on the
different responses of land covers to precipitation variability
(Scanlon et al., 2002).

The spectral-based approaches (SC and SU) require spectral char-
acterizations of each land cover component, which are usually deter-
mined from training datasets and associated empirical knowledge
(Friedl et al., 2002). The RA approach constructs a ratio scaled by max-
imum and minimum vegetation index values, and this approach does
not account for the heterogeneity of different plant functional types
within each pixel. The GO approach takes the three-dimensional struc-
ture of landscape into account by using multi-angle geometric-optical
models, and has shown great potential for representing savanna struc-
ture (Chopping et al., 2008), but local calibration from high-resolution
imagery is usually required. These four methods are either unable to
extract sub-pixel fractional covers or require calibration and/or empirical
knowledge. The ‘Mean-Sensitivity Unmixing Algorithm’ developed by
Scanlon et al. (2002) provides a different linear unmixing algorithm for
sub-pixel fractional cover that does not require calibration or other em-
pirical inputs. The algorithm utilizes the knowledge that different plant
functional types have different vegetation responses to precipitation,
and constructs a state space formed by two key variables for linearly
decomposing sub-pixel fractional covers:

(1) the mean vegetation states;
(2) the inter-annual sensitivity of vegetation to precipitation.

The algorithm objectively determines the endmembers on the basis of
an optimal fit to the observed data. Scanlon et al. (2002) applied the
MSUA concept to a Kalahari savanna transectwith a precipitation gradi-
ent of 300–1600 mm/yr using Normalized Difference Vegetation Index
(NDVI) as the vegetation dataset. In tropical regions with extensive
cloud cover, the MSUA's effectiveness may be limited if it only uses
the visible–near infrared (Vis–NIR)-based NDVI.

Vis–NIR RS has the longest history of vegetation monitoring. For ex-
ample, the Vis–NIR-based vegetation index record from the AVHRR is
from 1981 till present (Tucker et al., 2005). But the accuracy of Vis–
NIR RS products is affected by a number of factors include incomplete
atmospheric corrections (Tanre et al., 1992; Viovy et al., 1992), the in-
ability of the bidirectional reflectance distribution function (BRDF) to
represent the surface anisotropy property (Chopping et al., 2002), and
cloud cover that prevents Vis–NIR surface measurement especially for
tropical regions. Cloud fractions significantly increase during the rainy
season in tropical Africa (Fig. 1), which overlaps with the growing sea-
son. An analysis of the MODIS reflectance product MOD09 shows that
the daily NDVI suppression is correlated with cloud fraction during
the growing season in Africa (results not shown here), and similarly
for the AVHRR-based product (Tang & Oki, 2007). Maximum-value

compositing (MVC) (Holben, 1986; Viovy et al., 1992), temporal/spatial
averaging (Zhao et al., 2005), or the stricter cloud-pixel-screening
approaches (Heidinger et al., 2002)when applied to Vis–NIR RS datasets
can overcome this problem to a certain extent. But cloud residual noise
is still hard to separate from the true vegetation signals, and regionswith
extensive cloudiness often have large gaps (or significant noise) in their
product during the growing seasons. The low signal-to-noise ratio in
vegetation products causes problems in quantifying intra- and inter-
annual sensitivity of vegetation states to climate variability, particularly
in these regions. Thus, alternative measurements are required, such as
those frommicrowave sensors that have the ability to penetrate clouds.

In this paper, we apply the MSUA algorithm to derive the vegetation
fractional covers over a tropical savanna regionwith a broad precipitation
gradient ranging from200 to 2000 mm/yr.Weutilize andassess the capa-
bility of three independent RS products to determine two key variables
needed by theMSUA: themean vegetation states and the vegetation sen-
sitivity to precipitation. The three RS datasets are: (i) NDVI, based on Vis–
NIR bands in AVHRR; (ii) backscatter coefficients (dB) from NASA's
QuikSCAT active-microwave scatterometer; and (iii) Vegetation Optical
Depth (VOD) based on NASA's AMSR-E passive-microwave radiometry
measurements. Based on a comprehensive assessment of the multi-
sensor vegetation datasets with the TRMM 3B42v6 satellite-gauge
merged precipitation product, we find that NDVI is most suitable in
characterizing mean vegetation states, while dB provides the
most robust estimation of vegetation sensitivity to precipitation. By
combining these two products, essentially a synergistic use of optical-
microwave sensors, a new approach is proposed for deriving fractional
vegetation covers. A physical interpretation for how each product
responds to vegetation cover and its sensitivity to precipitation is provid-
ed to support the validity of the approach.

2. Materials and methods

2.1. Study area

The study domain (Fig. 1) is approximately 700 km wide and
2,800 km long, running southwest from the Ethiopia-Kenya border
(4° N) to the Botswana–South Africa border (24° S), and covers a
total area of approximately 2.4 million km2 (including large parts
of Kenya, Tanzania, Malawi, Zambia, Zimbabwe, and Botswana).
The mean annual precipitation (MAP) across the domain ranges from
200 to 2000 mm/yr (Fig. 1), resulting in widely varying distributions
of grass and tree fractions. The MAP is highest in the central portion,
and decreases to the southern and northern parts of the domain. The
land cover product from MODIS MCD12Q1 shows a similar gradient
with the central portion having more woodland, while the southern
portion havingmore shrubland and grassland, and the northern portion
being mainly composed of bare ground and grassland.

2.2. Datasets

Table 1 provides an overview of the datasets used in this study. Nor-
malized Difference Vegetation Index (NDVI) is the most extensively-
usedRSdata for vegetationmonitoring (Tucker et al., 2005). NDVI is for-
mulated based on the different absorption of chlorophyll-a and -b in
green leaves in the red (∼690 nm) and near-infrared (∼850 nm) fre-
quency bands (Glenn et al., 2008). This results in a unique vegetation
spectral feature distinctive of other land cover types (e.g. soil, water
and snow). NDVI is defined as:

NDVI ¼ ρNIR−ρRedð Þ= ρNIR þ ρRedð Þ ð1Þ

where ρRed and ρNIR refer to the reflectance at red and near-infrared fre-
quency, corresponding to AVHRR Band one (0.58–0.68 um) and Band
two (0.72–1.0 um) in this study. The Global Inventory Modeling and
Mapping Studies (GIMMS) NDVI based on AVHRR measurements is
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used (Tucker et al., 2005). The time-resolution of the dataset is half-
monthly, and the space-resolution is 8 km.

The backscatter coefficients are from the QuikSCAT scatterometer,
and it reported in decibels (dB). For convenience, we refer to this dataset
as ‘dB’ hereafter. Scatterometer was originally developed for observing
near-surface wind-fields over the ocean (Naderi et al., 1991), and it has
also been applied to characterize land surface properties (Frison &
Mougin, 1996; Frison et al., 1998; Frolking et al., 2005, 2006; Jarlan et
al., 2002; Zine et al., 2005). Because backscatter signals are determined
by the roughness and dielectric properties of the surface, they contain in-
formation on vegetation properties (in particular the vegetation density/
fraction and canopy water content), as well as the soil moisture. Mic-
rowave signal frequency and landscape anisotropy also impact the back-
scatter signals (Magagi & Kerr, 1997). Asmicrowave frequency increases,
above-ground photosynthetic biomass of vegetation contributesmore to
the variation in backscatter dB, and other factors have less impact
(McDonald, 1993; Ulaby et al., 1990). This is particularly true for Ku-
band scatterometers due to its high frequency (ranging from 12 to
18 GHz), which provides the scientific foundation of using Ku-band dB
for vegetation application (Frolking et al., 2005, 2006). The QuikSCAT
scatterometer is a Ku-band (13.4 GHz, or 2.1 cm wavelength) instru-
ment with two rotating pencil beam antennas operating in H and V po-
larizations at an incidence angle of 55° and 46°, respectively, and has
two equatorial overpasses per day (0600 and 1800 h). QuikSCAT was
launched in 1999 and operated until 23 November 2009 due to the fail-
ure of its motor for the spinning antenna. The original spatial resolution
of QuikSCAT was 22.5 km, but an enhanced 4.5 km resolution product is
used here, whichwas developed by combiningmultiple orbit overpasses
(Early & Long, 2001; Long et al., 1993). Since H and V polarizations have

similar sensitivity to surface characteristics (Hardin & Jackson, 2003), we
use H polarization in this analysis.

VegetationOptical Depth (VOD) is a derived product using a radiative
surface emission model based on measured microwave brightness tem-
peratures and other variables as inputs. A number of algorithms for VOD
have been proposed (Jones et al., 2009; Njoku & Chan, 2006; Owe et al.,
2001; Shi et al., 2008). Here, we use the algorithm of Jones et al. (2009,
2010, 2011). This VOD product is derived at the 25 km spatial resolution
using AMSR-E 18.7 GHz frequency daily brightness temperature (Tb)
measurement. The algorithm is based on a zero-order τ−ω radiative
surface emission formulation (Ulaby et al., 1982). At its 25 km resolution,
this VOD product explicitly accounts for the effect of openwater fraction
and land cover information (Jones et al., 2011). AMSR-E is a six-band
(6.9−89 GHz) dual-polarization radiometer with a rotating dish
antenna incidence angle of 55°. Its equatorial crossing times were 0130
and 1330 h, and it ceased operating on 4 October 2011 due to the
failure of its antenna motor.

Tropical Rainfall Measurement Mission (TRMM) rescaled multi-
satellite rainfall product version 3B42V6 is used as the precipitation
dataset. TRMM 3B42V6 is a 3 hourly, 0.25° product based on multi-
satellite retrievals that combine microwave and infrared estimates, and
are rescaled to match monthly gauge observations using histogram
matching (Huffman et al., 2007). The MODIS land cover product
MCD12Q1 (Friedl et al., 2002) is used here and is upscaled from 1 km
to 10 km based on the dominant land cover types. Our new fractional
cover product is validated against high-resolution images from Google
Earth Pro (Google, Inc.) in 24 locations with distinctive land-cover frac-
tions during the growing season. Among them, 16 locations are from
the Geoeye products and 8 locations are from DigitalGlobe products.

Fig. 1. (a) Mean annual precipitation (MAP) of Africa during years 2000–2010 from TRMM (Regions with MAP above 1800 mm/yr are not distinguished). The study transect is out-
lined in the black box. (b) Land cover information of the study area from MODIS 1 km land cover product MCD12Q1 (Friedl et al., 2002).

Table 1
Datasets used in this study: the variable fields, resolution and source (product).

Analysis Data Temporal resolution Spatial resolution Temporal coverage source

Multi-sensor assessment (half-monthly) NDVI Half-monthly 8 km
about 4.5 km

08/1999–12/2008 AVHRR GIMMSa

dB 4-day 08/1999–12/2008 QuikSCAT SIRb

VOD Daily 0.25° 07/2002–12/2008 AMSR-E(derived)c

precipitation 3 hourly 0.25° 08/1999–12/2008 TRMM 3B42V6d

Validation and comparison Google Earth (Geoeye(16) or DigitalGlobe(8)) Around 4m 2000–2011
VCF Yearly 500 m 2000–2005 MOD44Be

Ancillary data Land cover 1 km MCD12Q1f

a Tucker et al. (2005).
b Long et al. (1993), Early and Long (2001).
c Jones et al. (2009, 2010, 2011).
d Huffman et al. (2007).
e Hansen et al. (2003).
f Friedl et al. (2002).
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Our new product is further comparedwith another independent vegeta-
tion fraction product of MODIS Vegetation Continuous Fields (MOD44B
VCF), which provides yearly estimates of the tree fraction based on a su-
pervised regression tree algorithm (Hansen et al., 2003).

2.3. ‘Mean-Sensitivity Unmixing Algorithm’ (MSUA)

TheMSUA follows the work of Scanlon et al. (2002), which is a linear
un-mixingmodel of vegetation fractional covers based on two key fields:
(1)mean pixel values, and (2) inter-annual sensitivity of the pixel values
to precipitation. The algorithm is applied to the growing seasons as de-
fined in Section 2.4 and assumes minimal large-scale land cover change
during the 10 year studyperiod. The algorithmassumes that each pixel is
composed of three land cover types (grasses, trees, and bare soil, referred
to as ‘endmembers’). Each endmember has distinctive characteristics
that can be referenced back to the RS products: grass has high sensitivity
to precipitation and medium above-ground photosynthetic biomass,
trees have lower sensitivity to precipitation and high above-ground pho-
tosynthetic biomass, and bare soil has low sensitivity to precipitation and
no above-ground photosynthetic biomass. Pixels containing more than
one endmember display a mean vegetation state and sensitivity to pre-
cipitation, weighted by their respective fractional covers of each
endmember. All the pixels are supposed to fall inside a triangle envelope
in the ‘Mean-Sensitivity Space’ (Fig. 2),with three vertices, each associat-
ed with one endmember. In turn, each pixel can be decomposed into
three fractional covers based on their position inside the space.

In detail, the algorithm is composed of three equations and three un-
knowns (Fig. 2). The first equation (Eq. 2) requires that the total ground
area is composed only of three land cover types: grasses, trees and bare
soil, whose fractional covers are three unknowns. This simplification of
plant functional types has been found to be an effective representation
of savanna ecosystems (Caylor et al., 2006; Scanlon et al., 2002; Scholes
et al., 2002):

fg ið Þ þ f t ið Þ þ f s ið Þ ¼ 1 ð2Þ

where i refers to a specific pixel inside the transect, and fx refers to the
fraction of endmember x within the pixel i during growing seasons
(x=g, t, s, representing grasses, trees and soil respectively).

The second equation (Eq. 3) states that the mean vegetation states
during growing seasons in pixel i Vobs ið Þð Þ are equal to the sum of the
vegetation states of each endmember, weighted by their corresponding
fractional cover, fx(i) :

Vg fg ið Þ þ Vt ft ið Þ þ Vs fs ið Þ ¼ Vobs ið Þ ð3Þ

where Vx represents the mean vegetation states during growing sea-
sons for each endmember inferred from RS data (x=g, t, s). ‘Vegetation
states’ is used here to broadly describe above-ground vegetation char-
acteristics, whose specific meaning for each RS product has been
given in detail in Section 4.1.

The third equation (Eq. 4) assumes the overall sensitivity of vege-
tation to precipitation, Sobs ið Þ, is also a function of the linearly weight-
ed sensitivities of three endmembers.

Sg fg ið Þ þ St ft ið Þ þ Ss fs ið Þ ¼ Sobs ið Þ ð4Þ

where Sobs ið Þ is the inter-annual sensitivity of the pixel value to precip-
itation, calculated from a linear regression between yearly anomalies of
growing-season mean pixel values (dVobs (i)) and yearly anomalies of
growing-season total precipitation (dP(i) ) over the study period
(1999–2008):

Sobs ið Þ ¼ dVobs ið Þ
dP ið Þ

 !

ð5Þ

In Eq. (4), Sx refers to the inter-annual vegetation sensitivity to pre-
cipitation for an endmember (x=g, t, s).

2.4. Implementation and data processing

Our analysis is conducted at the half-monthly scale, focusing on the
most recent decade (1999–2008) due to availability of data (record
length: dB-10 years; VOD-7 years; NDVI-10 years). dB and VOD were
averaged to half- monthly, in order to smooth the noise and tomaintain
consistency with the half-monthly NDVI dataset. The datasets were ag-
gregated or interpolated to 10 km for the analysis.

The growing season for each pixel is defined as follows, based on the
half- monthly dataset. First, the rainy season is specified as the time peri-
od that includesmore than 85% of the annual total rainfall. The vegetation
growing season is then defined as the rainy season plus a post-season
addition that reflects vegetation activity after the end of the rainy season.
The addition is calculated to be the length of time until NDVI drops to 10%
of its seasonal range (i.e.=NDVImax−NDVImin, where NDVImax is the
peak value and NDVImin is the baseline value). Usually the addition
length ranges from 0.5 to 2 months, with grassland having shorter lags
and woodland longer ones. The above calculation uses mean annual pre-
cipitation andmean annualNDVI. Once the growing season is defined, the
analyses for three RS data follow the same definition.

In order to find the optimal representation of mean vegetation
states and vegetation sensitivity to precipitation, we first compared
the corresponding performance of the three RS datasets over different
land cover types. After that, the ‘Mean-Sensitivity Space’ was con-
structed by identifying pixels with significantly positive regressed sen-
sitivity (Pb0.1) that would be used to find the endmembers. Then, a
‘Simulated Annealing’ algorithm (Laarhoven et al., 1988) was used to au-
tomatically find the optimal endmembers for the ‘Mean-Sensitivity
Space’, such that the minimum area includes 99% of all the points.
Given the endmember values (Vt ,St ), (Vg ,Sg ), (Vs ,Ss ), and each pixel's
mean Vobs ið Þ and sensitivity Sobs ið Þ, the MSUA (Eq. 2 to Eq. 4) was finally
used to get the fractional covers for each pixel in the study domain.

2.5. Validation approach

To validate the quality of the new fractional cover product, we com-
pared our fractional coverwith classification results at 24 locationswith
diverse land cover types spanning the transect (c.f. Fig. 6c) using high-
resolution images from Google Earth Pro (Google Inc.). We chose the
high-resolution images because they have large spatial coverage and
match the scale of our product, unlikefield datawhich is usually collect-
ed in plots smaller than 0.1 km2 (Sankaran et al., 2005) and has a large

Fig. 2. Schematic diagramof the ‘Mean-Sensitivity UnmixingAlgorithm’ (MSUA) (Scanlon
et al., 2002). (a) Each pixel is composed of three land covers: grass (fg), tree (ft) and bare
soil (fs). (b) Conceptual ‘Mean-Sensitivity Space’ of vegetation. Three endmembers are:
grass, with high sensitivity to precipitation and medium above-ground photosynthetic
biomass; trees, with low sensitivity to precipitation and high above-ground photosynthet-
ic biomass; and bare soil, with low sensitivity to precipitation and low above-ground
photosynthetic biomass. Any pixels are supposed to fall inside this space.
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mismatch in scale with our product. The high-resolution images were
chosen based on the following criteria: 1) the overpass timewas within
the growing season defined in Section 2.4; 2) the scene was cloud-free;
and 3) the neighboring landscape was essentially homogeneous. The
latter two criteria were visually judged. Each image has the nominal
spatial resolution of 4 m, and is approximately 4.4 km2 in area. The im-
ageswere then applied to an unsupervised classification algorithm (Iso-
Data) in ENVI (Exelis Visual Information Solutions, Inc.) to separate
them into 12 classes. We visually merged the classes that overlap with
the tree crown area in the classified image. We only extracted the tree
fraction from the high-resolution images due to the high accuracy in
its identification, while fractions of grass and bare soil were not
extracted—since they are stillmixed at this spatial level. The detailed re-
sults and sample images are provided in the supplementary materials.

We also compare MOD44B VCF with the tree fraction derived from
the high-resolution images. The percent tree canopy in MOD44B refers
to the amount of skylight obstructed by tree canopies equal to or greater
than 5 m in height and is different than the percent crown cover (crown
cover=canopy cover+within crown skylight) (Hansen et al., 2003).
The latter (percent crown cover) is the definition of tree fraction from
high-resolution imagery. Thus, for comparison,we adopt the recommen-
dation of Hansen et al. (2003) to get the crown cover by dividing the
MOD44B canopy cover by 0.8.

3. Results

3.1. Multi-sensor assessment of mean vegetation states

Mean growing-season dB and VOD over all years in the study
period are compared in Fig. 3 with that of NDVI. Overall, the mean
VOD and mean NDVI exhibit a relatively strong linear correlation
(Fig. 3b). This also holds in general for correlations within each
land cover type based on the MODIS land cover product, as demon-
strated by the significant linear correlations between VOD and
NDVI, with R2 ranging from 0.176 to 0.671 for all the land cover
types (Pb0.001, Fig. 3d). NDVI is known to saturated at high values
of LAI (Huete et al., 1997), which is not clearly seen from the rela-
tionship between NDVI and VOD here. One possible reason is that
NDVI does not reach the saturation range, considering relatively
low above-ground leaf biomass in this savanna ecosystem. The linear
correlation between NDVI and dB (Fig. 3a) is not as high as that be-
tween NDVI and VOD (Fig. 3b), and a large scatter in dB is observed
across a narrow range of low NDVI values (Fig. 3c). The correlation
between NDVI and dB is insignificant for bare ground, and negative
for open shrubland. Apart from these two land cover types, other
land cover types show significant linear correlations between NDVI
and dB (Pb0.001), with R2 ranging from 0.162 to 0.581.

Fig. 3. (a and b) Scatterplots of mean growing-season NDVI–dB, and NDVI–VOD, respectively. Color shading corresponds to land cover types. (c and d) Linear regression slopes for
the same land cover types for mean growing-season NDVI–dB, and NDVI–VOD, respectively. (e) Normalized mean value of NDVI, dB and VOD for different land cover types. The
normalization is done such that the maximum and minimum values correspond to 1 and 0. ‘EB Forest’ refers to evergreen broadleaf forest.
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The normalized mean values of different land cover types for three
datasets are compared in Fig. 3e with error bars showing the standard
deviation. As expected, the mean pixel value of bare ground is the low-
est, woodland and forest are the highest, and shrubland and grassland
are intermediate. Cropland shows a relatively high mean pixel value
that is similar to woodland. The major inconsistency is that dB has ab-
normally high values for bare ground as compared to the two other
datasets, probably due to the soil surface roughness effect. This mis-
match indicates that dB may fail to represent mean vegetation states
when bare soil fraction is a large fraction of a pixel.

3.2. Multi-sensor assessment for inter-annual sensitivity of vegetation to
precipitation

The adjusted R2 of the linear regressions between the annual
growing- seasonNDVI/dB/VODandprecipitation are shown in Fig. 4. Spa-
tial patterns of adjusted R2 for all pixels, regardless of their significance
level, show a similarity across all three RS datasets (Fig. 4 left column),
where the northern and some near-equatorial regions have high R2

(corresponding to relatively low precipitation and shrubland/grassland),
and the central region of the domain has low R2 (corresponding to rela-
tively high precipitation and woodlands). However there are also appar-
ent differences in the three datasets. NDVI has generally lower R2 than dB
and VOD. At the Pb0.1 significance level, only a small fraction of pixels in
the study region show significant correlations (Fig. 4 right column) for
NDVI. In the case of dB, the majority of the pixels exhibit significant
correlations.

The inter-annual sensitivities of pixel values to precipitation (i.e. the
slopes of the linear regression) for the three RS datasets are shown in
Fig. 5. All three RSdatasets share similar patternswith shrubland having
the highest sensitivity to precipitation, and both bare ground andwood-
land having low sensitivity. Butwhen the percentage of pixels satisfying
the significance level (Pb0.1) is considered, dB is superior to the other
two datasets. Except for the case of bare ground, all other land cover
types have more than 60% of pixels with significant correlations be-
tween dB and precipitation (Pb0.1), far exceeding the percentages of
VODandNDVI.We further find thatmanypixels fall in the up-left quad-
rant in Fig. 5c, which means these pixels exhibit a negative correlation

Fig. 4. Adjusted R2 values for the linear correlation between annual fields of growing season NDVI/dB/VOD and TRMM precipitation. (Left column) all pixels regardless of signifi-
cance level; (right column) pixels only with significant correlation (Pb0.1).
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between NDVI and precipitation, but a positive correlation between dB
and precipitation. The negative correlation between NDVI and precipi-
tation is mostly caused by the cloud contamination for Vis–NIR sensors,
but it is largely overcome by the microwave sensors (see detailed dis-
cussion in Section 4.1).

3.3. Multi-sensor derivation of fractional covers and its validation

Based on the results of the multi-sensor assessments, we find NDVI
and VOD are good in characterizing land cover variations based on
mean pixel values, and dB is best to represent vegetation sensitivity.
Therefore we merged the use of NDVI (for its higher spatial resolution
than VOD) and dB to construct a new ‘Mean-Sensitivity Space’ for
decomposing sub-pixel fractional covers (Fig. 6).

We find our product compares favorably with the tree fraction de-
rived from high-resolution images in locations with natural vegetation
(y=0.74x+0.15, R2=0.71, P=0.007, Fig. 7a). However in cropland-
mixed locations, our tree fraction is overestimated. The cropland in
the study transect is mostly located near water bodies, where irrigation
is a popular agricultural management activity. These factors cause the
cropland in the transect to have relatively high mean pixel values and
low sensitivity to precipitation, which is very similar to trees' response.
Since the irrigated cropland is prevalent in the north of Lake Victoria,

the derived high tree fraction there is overestimated. This indicates
that MSUA is most effective for natural vegetation rather than human-
impacted land covers. We find MOD44B VCF generally has lower tree
fraction than that derived from high-resolution images (y=0.71x
−0.074, R2=0.57, P=0.125, Fig. 7b). Though it is worthwhile to notice
that the classification of the high-resolution images may include some
short shrubs that are identified as trees due to their similar spectral fea-
ture. The MOD44B VCF does not have an overestimation of tree fraction
in cropland as found in the MSUA. This is mostly because the VCF algo-
rithm is based on the spectral information, and there is a significant
spectral difference between crops and trees. The direct validation of
grass and bare soil is difficult due to the lack of field data. But our prod-
uct has reproducedwell the land cover pattern of theMODIS land cover
map (Fig. 1b) with the northern part having more bare ground while
the southern part having more grass/shrubland.

4. Discussion

4.1. Physical interpretations of the RS datasets

The differences in the three RS datasets are due to their sensitivities to
different land surface properties (e.g. vegetation, soil, surface roughness)
and atmospheric effects. Understanding the causes of these differences is

Fig. 5. (a) Normalized inter-annual sensitivity of NDVI/dB/VOD to TRMMprecipitation. The normalization is done such that themaximumandminimumvalues correspond to 1 and 0 for
each type of the RS datasets. The error bars give the standard deviation of the normalized sensitivity. ‘EB Forest’ refers to evergreen broadleaf forest. (b) Percentage of pixels satisfying
significance level (Pb0.1) in linear regression between annual growing-season RS fields and precipitation, for each land cover type. (c) Scatterplot of the inter-annual sensitivity of
NDVI–TRMM and dB–TRMM, pixels with significant correlations (Pb0.1) in both cases are shown here. (d) Scatterplot of the inter-annual sensitivity of VOD–TRMM and dB–TRMM.
The color shadings correspond to land cover types.
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important for justifying ourmulti-sensor approach and its future applica-
tion. We propose the following simplified physical interpretations for the
three RS datasets based on our results and the literature review:

NDVI ¼ F1 P; f t; fg
! "

F4 cloudiness;Pð Þ þ ε1 ð6Þ

dB ¼ F2 P; f t; fg
! "

þ F5 P; f sð Þ þ ε2 ð7Þ

VOD ¼ F3 P; f t; fg
! "

þ F6 P; fsð Þ þ ε3 ð8Þ

where P refers to precipitation; F1 , F2 and F3 are vegetation response func-
tions of NDVI, dB and VOD, respectively; F4 describes the nonlinear cloud-
iness effects on Vis–NIR-based NDVI ( i.e. more clouds lower the value of
NDVI, and lead to smaller F4, and vice versa); F5 and F6 describe the soil
moisture contribution for microwave sensors; ε1, ε2 and ε3 are other im-
pact factors which vary little inter-annually. NDVI signal also has some

contribution from background soil, and this term has been included in
ε1 as it is much less important than F4 for NDVI, especially in the tropics.
The physical interpretations of F1, F2 and F3 are proposed as follows:

F1: describes the landscape-integrated canopy-level leaf chlorophyll
and photosynthetic intensity (Sellers et al., 1992).
F2: describes the landscape-integrated vegetation canopy biomass
(depending on wavelength for penetrating ability) and top-canopy
water content (including interception and leaf water content)
(Jarlan et al., 2002; Wagner et al., 1999a). In this case, Ku-band dB
only detects the top-canopy information due to its relatively small
wavelength which is unable to penetrate the whole canopy.
F3: describes the landscape-integrated total water column through
the whole canopy (Jones et al., 2010).

We assume the overall signals are a weighted summation of different
plant-functional-types (PFTs) within each pixel, and interactions among

Fig. 6. (a) Tree fraction fromMOD44B VCF product averaged from 2000 to 2005. (b) The ’Mean-Sensitivity Space’ combining mean NDVI as x-axis, and inter-annual sensitivity of dB
to precipitation as y-axis, with the optimal fitted triangle. Newly derived fractional covers for tree(d), grass(e) and bare soil(f) are presented. (c) Tree fraction from the classification
results of the high-resolution imagery, cropland-mixed points are identified with black circles, and other points are natural vegetation.
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different PFTs and between PFTs and bare soil are neglected in theMSUA.
The latter assumptionhas its limitation since the off-nadir viewof theme-
dium/coarse-resolution sensors (e.g. AVHRR and QuikSCAT) observes a
three-dimensional landscape rather than two-dimension. Fortunately
this limitation is moderated in the MSUA approach since the MSUA uses
the 10-year mean vegetation states and the regressed sensitivity of vege-
tation to precipitation, such that the result is much less sensitive to short-
term variabilities/errors in the RS dataset (Scanlon et al., 2002).

The proposed physical interpretations can account for the differ-
ences in the observed seasonality in Hovmöller Diagrams (Fig. 8),
which is the zonal average of half-monthly mean of each dataset. Leaf
chlorophyll and photosynthetic intensity carried by NDVI do not exhibit
strong signals in the early stage of rainy season, due to the small fraction
of vegetation. As the rainy season progresses, vegetation fraction ex-
pands, and photosynthetic rate of individual plant also increases, both
of which lead to an increase in NDVI with a certain lag time after the

precipitation. The various lags between NDVI and precipitation show
the difference in response time for different PFTs (i.e. grass and tree) to
precipitation inputs. dB responds quickly to precipitation, which results
from the early green-up in top-canopy leaves, leaf water interception
and instantaneous response of soil moisture. In the early rainy season,
soilmoisture in bare soil accounts for themajor variability in the dB signal
because of the low biomass, small vegetation fraction and large bare soil
fraction, all of which lead to a shorter lag of dB to precipitation compared
with the lag of NDVI to precipitation. In the late rainy season, biomass
dominates the dB signal with various time lags after precipitation,
which also reflects the difference in response to precipitation for different
land cover types. VOD's seasonality has larger lags compared toNDVI and
dB for woodland; the difference is less obvious for grassland/shrubland;
and there is almost no difference in the most northern part, where bare
ground dominates. The radiative surface emission model defines VOD
as the attenuation medium of brightness temperature signal (Tb) from
the underlying soil moisture passing through the whole canopy (Jones
et al., 2010, 2011). The lagged response of VOD is consistent with the
understanding that water content within a tree can usually accumulate
till the end of rainy season, but not necessarily for biomass (Jones et al.,
2010).

The proposed physical interpretations also explain the differences
of inter-annual sensitivity to precipitation in the three RS datasets
(i.e. d NDVIð Þ

dP , d dBð Þ
dP and d VODð Þ

dP ), which are expressed in the following way:

d NDVIð Þ
dP

¼ d F1ð Þ
dP

F4 þ
d F4ð Þ
dP

F1 ð9Þ

d dBð Þ
dP

¼ d F2ð Þ
dP

þ d F5ð Þ
dP

ð10Þ

d VODð Þ
dP

¼ d F3ð Þ
dP

þ d F6ð Þ
dP

ð11Þ

The left-hand side of the equations are the regressed sensitivity from
the data, but the terms d F1ð Þ

dP , d F2ð Þ
dP , d F3ð Þ

dP in the right-hand side of the equa-
tions represent the actual vegetation sensitivity to precipitation, con-
founded by other terms which can be treated as noise in this study.
The noise terms aremainly caused by either cloud covers or background
soilmoisture. Since all the datasets contain vegetation signals and noise,
the signal-to-noise ratio (SNR) of each dataset becomes the primary
concern. In Eq. (9), the term d F4ð Þ

dP could be negative during rainy seasons
when increased precipitation associates with more clouds, which sup-
press NDVI signals (Tang & Oki, 2007; also see Section 4.2 for detailed
discussion). The product of this negative term and positive d F1ð Þ

dP may re-

sult in a large negative term, which may result in a negative d NDVIð Þ
dP .

Vegetation sensitivity of dB (Eq. 10) is affected by soil moisture term
d F5ð Þ
dP . The Hovmöller Diagrams (Fig. 8) show that soil moisture plays
some role in explaining dB's intra-annual variation, especially in the
early phase of rainy seasons when vegetation fraction is small. This
means dB may not be a good indicator for assessing vegetation intra-
annual variability. But dB's inter-annual sensitivity of bare soil to precip-
itation is very low (Section 3.2 and Fig. 5), i.e. soil moisture for a pure
bare soil pixel has little sensitivity to precipitation at the inter-annual
level. This is because the Ku-band dB used here can only detect the soil
moisture from less than 1 cm depth (Frison et al., 1998; Mladenova et
al., 2009; Scipal et al., 2002; Wagneret al., 1999b). The moisture in the
shallow top soil layer that Ku-band dB is sensitive to saturates rapidly,
which makes dB have little inter-annual sensitivity to precipitation on
bare soil. Since the overall inter-annual sensitivity of a pixel is aweighted
average from both vegetation and bare soil, the soil moisture contribu-
tion to the overall pixel sensitivity is relatively small compared to that
from vegetation, especially in the regions where bare soil fraction is
low, such as in woodland.

Fig. 7. (a) Comparison of the MSUA-derived tree fractional covers with the classifica-
tion results from high-resolution imagery. Red dots refer to the tree fractional covers
of natural vegetation, with linear fitting in red line and 95% confidence interval in
red dashed line. Blue dots refer to the validation points partially containing cropland,
and their tree fractions are overestimated in the MSUA. (b) Comparison of the mean
tree fractional covers (from 2000 to 2005) from the MOD44B VCF with the classifica-
tion results from high-resolution imagery, with linear fitting in green line and 95% con-
fidence interval in green dashed line.
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4.2. NDVI sensitivity to precipitation

We attribute the negative sensitivity of NDVI to precipitation to the
degraded signal-to-noise ratio (SNR) due to the cloud effect, which is a
common problem for Vis–NIR-based sensors. Alternatively, excessive
precipitation is usually accompanied by increased cloud covers in trop-
ical regions, leading to decreased photosynthetic active radiation (PAR),
thus limiting ecosystem productivity. The same argument underpins an
unresolved debate about the Amazonian green-up during the 2005
drought, which was primarily found from another Vis–NIR-based vege-
tation index, the Enhanced Vegetation Index (EVI) (Asner & Alencar,
2010; Ollinger, 2010; Saleska et al., 2007; Samanta et al., 2010).

We argue that the inter-annual sensitivity of NDVI to precipitation
resulted from the interplay among precipitation, cloud and vegetation:
(1) vegetation sensitivity to precipitation decreases with precipita-
tion (Fig. 9a); (2) cloudiness increases with precipitation (Fig. 9b).
These two patterns lead to the variable NDVI sensitivity in different

precipitation ranges (Fig. 9c). When precipitation is below 650 mm/yr,
vegetation sensitivity is high, while cloudiness impact is minimal, thus
NDVI has a high SNR (corresponding to high coefficient of variation,
CV). For the precipitation range from 650 mm/yr to 1200 mm/yr, vege-
tation sensitivity decreases, and cloud effect becomes pronounced and
obscures the NDVI dynamics (decreased and flattened CV). Most nega-
tive NDVI sensitivity to precipitation appears in this precipitation
range, because the low SNR of NDVI contains large uncertainties.
When precipitation is above 1200mm/yr, vegetation becomes insensi-
tive to precipitation. dB's superiority over NDVI for assessing vegetation
sensitivity mostly arises from dB's high SNR across all precipitation
ranges, due to the ability of microwave sensors to penetrate cloud.

4.3. Uncertainties and limitations of multi-sensor MSUA approach

1) Though mean vegetation states is additive within a landscape for
different PFTs, whether the sensitivity to precipitation is additive

Fig. 8. The Hovmöller Diagram (zonal averaging for the same period) for TRMM, NDVI, dB and VOD. (Left column) the Hovmöller Diagram of raw value; (middle column) the Hovmöller
Diagram with ranked values for the same latitude, with 0 and 1 representing minimum and maximum at a specific latitude. (Right column) Selected latitudinal cross-sections in
Hovmöller Diagram of ranked values for different datasets, for better illustration of time series.
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(or linearly) over the whole range of precipitation deserves more
investigation.

2) The regressed sensitivity of vegetation to precipitation assumes little
land cover changes happen during the study period, which makes
the MSUA more valid for long-term fractional retrieval rather than
a temporally dynamic fraction extraction.

3) The MSUA is more suitable for natural vegetation rather than re-
gions with high human impacts (e.g. irrigated cropland), as shown
in the validation section. The LAI of cropland usually ranges widely
between grassland and woodland values. For highly-irrigated crop-
land, it would have little sensitivity to precipitation; for dry-land
and rain-fed cropland, its response to precipitation would behave
more like a grassland. Both cases are widely available in the Africa
continent. Thus it is recommended that when applying the MSUA
to larger areas, highly human-impacted regions should be excluded.

4.4. Ecohydrological implications from the derived vegetation fraction

Our results demonstrate the control of precipitation on the vegeta-
tion fractions. Fig. 10 shows that tree fraction reaches the plateau when
precipitation is around 750 mm/yr; below that threshold value, tree frac-
tion is controlled by MAP; and above that value, tree fraction is not re-
sponsive to MAP, which agrees with the prior field-data-based work
(Sankaran et al., 2005). Grass cover peaks around 450 mm/yr; and
below this value, it is controlled by MAP; above this value, it may be
suppressed by tree fraction.

Another interesting pattern is revealed from the trajectory of latitu-
dinally averaged fractional covers (only natural vegetation, excluding
cropland-mixed pixels) and mean annual precipitation (MAP) over
the transect (Fig. 11). Tree fraction follows the trajectory ofMAP in gen-
eral, and show peaks in the central portion of the transect. Both grass

and bare soil fractions are suppressed by tree fraction in the central por-
tion, but show opposite patterns in the northern and southern portion,
both of which have low precipitation. Grass dominates the southern
portion,while the northern portion hasmore bare soil, possibly resulted
from the land degradation or geological factors.

5. Conclusion

We derived a new vegetation fractional cover product (including
tree, grass and bare soil) along a large tropical savanna transect, that
combines the advantages of Vis–NIR and microwave sensors, using an
existing frame-work MSUA. Our product agrees with the tree fraction
derived from high-resolution images for natural vegetation, but not
necessarily for highly human-managed areas (e.g. irrigated cropland).
Because our underlying datasets are global in nature, our approach
has the potential to be applied at continental and global scales for
natural vegetation.

In order to effectively implement the MSUA, we assessed the ability
of three independent RS datasets for characterizing two key variables:
mean vegetation states and vegetation inter-annual sensitivity to precip-
itation. We find NDVI and VOD have a reasonably high correlation in
mean pixel values, and both are representative for different land cover
types; while dB signal shows abnormally high value as more bare soil
fraction present in the pixel. For inter-annual sensitivity to precipitation,
microwave-based sensors, especially dB, largely overcome the cloudiness

Fig. 9. (a) Conceptual diagram of vegetation sensitivity to precipitation as a function of
mean annual precipitation (MAP). (b) Conceptual diagram of cloudiness as a function
of MAP. (c) Coefficient of variation (CV) of mean growing-season NDVI for all the pixels
as a function of MAP from TRMM, with the red dots refer to the mean CV values for
each 100 mm/yr bin.

Fig. 10. (a) Derived tree fraction as a function of mean annual precipitation. Sankaran
et al. (2005) tree fraction from field data is plotted in black above our derived results,
showing the consistency in trend. (b) Derived grass fraction as a function of mean an-
nual precipitation. Grass fraction peaks when mean annual precipitation (MAP) is
around 450 mm; below this threshold, grass fraction is controlled by the MAP; above
this threshold, grass fraction may be suppressed by increased tree fraction.
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problem found in NDVI, therefore can characterize more robust vegeta-
tion responses to precipitation. Our analysis provides insight to the inter-
pretations of vegetation inter-annual variability of the different RS
datasets, and identifies the possible source of uncertainties arisen from
cloudiness and background soil moisture. This research will benefit the
further RS application in ecosystem monitoring.
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