Species-level diversity of belowground structure in savanna woody plants: Evidence from a new excavation method

FC O’Donnell¹, KK Caylor¹, P D’Odorico², GS Okin³, A Bhattachan², and K Dintwe³

¹Civil and Environmental Engineering, Princeton University
²Environmental Sciences, University of Virginia
³Geography, University of California, Los Angeles
Determinants of Woody Cover in Savannas

Percent Woody Cover:
- 65%
- 40%
- 20%
- 14%

Percent Grass Cover:
- 0-10%
- 5-15%
- 10-40%
- 2-20%

Savanna
Woodland
Open
Savanna

Photos by L. Wang
Determinants of Woody Cover in Savannas

Fire

Resource Competition

Megafauna Activity
Determinants of Woody Cover in Savannas

Disturbance Exclusions
Belowground Competition

Determinants of Woody Cover in Savannas

...
Determinants of Woody Cover in Savannas

The Modeled Root Zone

Density-based

Trees + Grasses

Trees Only

Individual-based

Grass

Tree
Representing Diversity

(a) Terminalia sericea

(b) Baikiaea plurijuga

Holdo and Timberlake, 2008
Representing Diversity

Terminalia sericea

Baikiaea plurijuga

Holdo and Timberlake, 2008
Research Goals

Measure roots in a way that supports the development of realistic, individual-based models.

Quantify observed diversity in root system structure.
The AirSpade

Concept Engineering, Verona, PA
2-3 times faster than manual excavation
Leaves roots > 2 mm diameter in place and intact
Root Mapping

Grid System

A “Voxel”
Root Mapping

Tagged Roots

Following Roots
Challenges

Overburden

Maximum Depth ~1.5 m
Quantifying Diversity - The Kalahari Transect

Shakawe
539 mm MAP

Bokspits
177 mm MAP

Tshane
358 mm MAP
Quantifying Diversity - Species

Shakawe (Rainy)

- *Terminalia sericea*
 - Drought deciduous small tree or shrub
- *Ochna pulchra*
 - Semi-evergreen tree

Bokspits (Dry)

- *Acacia mellifera*
 - Drought deciduous shrub
- *Boscia albitrunca*
 - Evergreen tree
Lateral Root Distributions

Shakawe

Terminalia sericea
- $r_{90} = 5.3\ m$
- Lateral Root Mass: 14 kg

Ochna pulchra
- $r_{90} = 1.3\ m$
- Lateral Root Mass: 1.9 kg

Bokspits

Acacia mellifera
- $r_{90} = 3.5\ m$
- Lateral Root Mass: 2.5 kg

Boscia albitrunca
- $r_{90} = 4.7\ m$
- Lateral Root Mass: 30 kg
Lateral and Vertical Root Distributions

Acacia mellifera
Vertical Root Distributions

$r_{90} = 3.5\, \text{m}$

Cumulative Biomass (kg)

$B = 2.45\, e^{-0.67r}$

$r^2 = 0.98$

rmse = 0.10 kg

Acacia mellifera
Lateral and Vertical Root Distributions

Acacia mellifera
Exponentially distributed
Shallow-rooted

B = 2.55 \(e^{-4.2z} \)
\(r^2 = 0.99 \)
rmse = 0.12 kg

B = 2.45 \(e^{-0.67r} \)
\(r^2 = 0.98 \)
rmse = 0.10 kg
Lateral and Vertical Root Distributions

B = \frac{c}{\Gamma(7.62)} \gamma(7.62, \frac{z}{0.199})

r^2 = 0.99
rmse = 1.4 kg

Boscia albitrunca
Gamma distributed
Deep-rooted
Small-scale Structural Diversity

Sinuosity Index = \frac{L}{D}

- **Sinuous Root**
- **Straight Root**

Graph:
- **X-axis:** Site (Wet, Intermediate, Dry)
- **Y-axis:** Sinuosity index
- **Legend:**
 - Ochna pulchra
 - Terminalia sericea
 - Acacia mellifera
 - Boscia albitrunca

- **More sinuous**
- **Straighter**
Probabilistic Rooting Distributions

Cumulative Distribution Function

Acacia mellifera
Exponentially distributed

\[
B = 2.55 e^{-4.2z} \\
r^2 = 0.99 \\
\text{rmse} = 0.12 \text{ kg}
\]

Boscia albitrunca
Gamma distributed

\[
B = c \left[\frac{1}{1(7.62)} \right]^{\frac{z}{7.62}} \left(\frac{z}{0.199} \right) \\
r^2 = 0.99 \\
\text{rmse} = 1.4 \text{ kg}
\]

Probability Density Function
Probabilistic Rooting Distributions

Vertical Marginal Density Function

Depth (m)

Lateral Marginal Density Function

Radial Distance from Stem (m)

0

Joint Density Function: Farlie-Gumbel-Morgenstern Model

\[f_B(r, z) = f_B(r)f_B(z)\{1 + 3\rho[2F_B(r) - 1][2F_B(z) - 1]\} \]

\[F_B(r, z) = F_B(r)F_B(z)\{1 + \rho[1 - F_B(r)][1 - F_B(z)]\} \]
Probabilistic Rooting Distributions

Acacia mellifera

Boscia albitrunca
Probabilistic Rooting Distributions

Lateral Distributions
- Shallow-Rooted
- Deep-Rooted

Vertical Distributions
- Shallow-Rooted
- Deep-Rooted

Canopy Radius
- 0.5 m
- 1 m
- 2 m
- 3 m
Root System Interactions

Lateral distribution: \(B(r) = a_r e^{-b_r r} \)

Vertical distribution: \(B(z) = a_z e^{-b_z z} \)

More lateral spread

\(\frac{b_r}{b_z} \)

More vertical spread
Acknowledgements

Funded by NSF grant DEB 0717360